IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p578-587.html
   My bibliography  Save this article

A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics

Author

Listed:
  • Iranpanah, N.
  • Mohammadzadeh, M.
  • Taylor, C.C.

Abstract

Efron (1979) introduced the bootstrap method for independent data but it cannot be easily applied to spatial data because of their dependency. For spatial data that are correlated in terms of their locations in the underlying space the moving block bootstrap method is usually used to estimate the precision measures of the estimators. The precision of the moving block bootstrap estimators is related to the block size which is difficult to select. In the moving block bootstrap method also the variance estimator is underestimated. In this paper, first the semi-parametric bootstrap is used to estimate the precision measures of estimators in spatial data analysis. In the semi-parametric bootstrap method, we use the estimation of the spatial correlation structure. Then, we compare the semi-parametric bootstrap with a moving block bootstrap for variance estimation of estimators in a simulation study. Finally, we use the semi-parametric bootstrap to analyze the coal-ash data.

Suggested Citation

  • Iranpanah, N. & Mohammadzadeh, M. & Taylor, C.C., 2011. "A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 578-587, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:578-587
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00243-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kent, J. T. & Mohammadzadeh, M., 1999. "Spectral Approximation to the Likelihood for an Intrinsic Gaussian Random Field," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 136-155, July.
    2. Politis, D. N. & Romano, J. P., 1993. "Nonparametric Resampling for Homogeneous Strong Mixing Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 301-328, November.
    3. Dale Zimmerman & Noel Cressie, 1992. "Mean squared prediction error in the spatial linear model with estimated covariance parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 27-43, March.
    4. Hall, Peter, 1985. "Resampling a coverage pattern," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 231-246, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castillo-Páez, Sergio & Fernández-Casal, Rubén & García-Soidán, Pilar, 2019. "A nonparametric bootstrap method for spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 1-15.
    2. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    3. Adler, Werner & Brenning, Alexander & Potapov, Sergej & Schmid, Matthias & Lausen, Berthold, 2011. "Ensemble classification of paired data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1933-1941, May.
    4. Pigoli, Davide & Menafoglio, Alessandra & Secchi, Piercesare, 2016. "Kriging prediction for manifold-valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 117-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    2. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    3. Meyer, Marco & Jentsch, Carsten & Kreiss, Jens-Peter, 2015. "Baxter`s inequality and sieve bootstrap for random fields," Working Papers 15-06, University of Mannheim, Department of Economics.
    4. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
    5. William F. Christensen, 2011. "Filtered Kriging for Spatial Data with Heterogeneous Measurement Error Variances," Biometrics, The International Biometric Society, vol. 67(3), pages 947-957, September.
    6. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
    7. Tina Kalayil & Somya Tyagi & Mahfuza Khatun & Sikandar Siddiqui, 2019. "A Risk-Sensitive Momentum Approach To Stock Selection," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 64(220), pages 61-84, January –.
    8. Jeremy T. Fox & Patrick Bajari, 2013. "Measuring the Efficiency of an FCC Spectrum Auction," American Economic Journal: Microeconomics, American Economic Association, vol. 5(1), pages 100-146, February.
    9. Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
    10. Cerqueti, Roy & Falbo, Paolo & Pelizzari, Cristian, 2017. "Relevant states and memory in Markov chain bootstrapping and simulation," European Journal of Operational Research, Elsevier, vol. 256(1), pages 163-177.
    11. Buhlmann, Peter & Kunsch, Hans R., 1999. "Block length selection in the bootstrap for time series," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 295-310, September.
    12. Hinrichsen, Richard A. & Paulsen, Charles M., 2020. "Low carrying capacity a risk for threatened Chinook Salmon," Ecological Modelling, Elsevier, vol. 432(C).
    13. Lahiri, Soumendra Nath, 1997. "On Inconsistency of the Jackknife-after-Bootstrap Bias Estimator for Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 15-34, October.
    14. Werner Müller & Milan Stehlík, 2009. "Issues in the optimal design of computer simulation experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 163-177, March.
    15. BenSaïda, Ahmed, 2019. "Good and bad volatility spillovers: An asymmetric connectedness," Journal of Financial Markets, Elsevier, vol. 43(C), pages 78-95.
    16. Michel Carbon, 2008. "Asymptotic Normality of Frequency Polygons for Random Fields," Working Papers 2008-09, Center for Research in Economics and Statistics.
    17. Huang, Whitney K. & Chung, Yu-Min & Wang, Yu-Bo & Mandel, Jeff E. & Wu, Hau-Tieng, 2022. "Airflow recovery from thoracic and abdominal movements using synchrosqueezing transform and locally stationary Gaussian process regression," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    18. C. Helbert & D. Dupuy & L. Carraro, 2009. "Assessment of uncertainty in computer experiments from Universal to Bayesian Kriging," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 99-113, March.
    19. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Srijan Sengupta & Xiaofeng Shao & Yingchuan Wang, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 315-326, May.
    20. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:578-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.