IDEAS home Printed from https://ideas.repec.org/a/wly/amposc/v53y2009i1p241-257.html
   My bibliography  Save this article

Bayesian Spatial Survival Models for Political Event Processes

Author

Listed:
  • David Darmofal

Abstract

Research in political science is increasingly, but independently, modeling heterogeneity and spatial dependence. This article draws together these two research agendas via spatial random effects survival models. In contrast to standard survival models, which assume spatial independence, spatial survival models allow for spatial autocorrelation at neighboring locations. I examine spatial dependence in both semiparametric Cox and parametric Weibull models and in both individual and shared frailty models. I employ a Bayesian approach in which spatial autocorrelation in unmeasured risk factors across neighboring units is incorporated via a conditionally autoregressive (CAR) prior. I apply the Bayesian spatial survival modeling approach to the timing of U.S. House members' position announcements on NAFTA. I find that spatial shared frailty models outperform standard nonfrailty models and nonspatial frailty models in both the semiparametric and parametric analyses. The modeling of spatial dependence also produces changes in the effects of substantive covariates in the analysis.

Suggested Citation

  • David Darmofal, 2009. "Bayesian Spatial Survival Models for Political Event Processes," American Journal of Political Science, John Wiley & Sons, vol. 53(1), pages 241-257, January.
  • Handle: RePEc:wly:amposc:v:53:y:2009:i:1:p:241-257
    DOI: 10.1111/j.1540-5907.2008.00368.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1540-5907.2008.00368.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1540-5907.2008.00368.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Berry, William D. & Baybeck, Brady, 2005. "Using Geographic Information Systems to Study Interstate Competition," American Political Science Review, Cambridge University Press, vol. 99(4), pages 505-519, November.
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. Franzese, Robert J. & Hays, Jude C., 2007. "Spatial Econometric Models of Cross-Sectional Interdependence in Political Science Panel and Time-Series-Cross-Section Data," Political Analysis, Cambridge University Press, vol. 15(2), pages 140-164, April.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Warwick, Paul, 1992. "Economic Trends and Government Survival in West European Parliamentary Democracies," American Political Science Review, Cambridge University Press, vol. 86(4), pages 875-887, December.
    6. Michael Colaresi, 2004. "When Doves Cry: International Rivalry, Unreciprocated Cooperation, and Leadership Turnover," American Journal of Political Science, John Wiley & Sons, vol. 48(3), pages 555-570, July.
    7. Box-Steffensmeier, Janet M. & Arnold, Laura W. & Zorn, Christopher J. W., 1997. "The Strategic Timing of Position Taking in Congress: A Study of the North American Free Trade Agreement," American Political Science Review, Cambridge University Press, vol. 91(2), pages 324-338, June.
    8. Berry, Frances Stokes & Berry, William D., 1990. "State Lottery Adoptions as Policy Innovations: An Event History Analysis," American Political Science Review, Cambridge University Press, vol. 84(2), pages 395-415, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcel Bednarz & Tom Broekel, 2020. "Pulled or pushed? The spatial diffusion of wind energy between local demand and supply," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(4), pages 893-916.
    2. Bodunrin Brown & Bin Liu & Stuart McIntyre & Matthew Revie, 2023. "Reliability evaluation of repairable systems considering component heterogeneity using frailty model," Journal of Risk and Reliability, , vol. 237(4), pages 654-670, August.
    3. Alexandre SAUQUET, 2011. "Exploring the Nature of Strategic Interactions in the Ratification Process of the Kyoto Protocol," Working Papers 201119, CERDI.
    4. Finn Hedefalk & Luciana Quaranta & Tommy Bengtsson, 2017. "Unequal lands: Soil type, nutrition, and child mortality in southern Sweden, 1850-1914," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 36(36), pages 1039-1080.
    5. Amy Y. Li, 2017. "Dramatic Declines in Higher Education Appropriations: State Conditions for Budget Punctuations," Research in Higher Education, Springer;Association for Institutional Research, vol. 58(4), pages 395-429, June.
    6. Aswi Aswi & Susanna Cramb & Earl Duncan & Wenbiao Hu & Gentry White & Kerrie Mengersen, 2020. "Bayesian Spatial Survival Models for Hospitalisation of Dengue: A Case Study of Wahidin Hospital in Makassar, Indonesia," IJERPH, MDPI, vol. 17(3), pages 1-12, January.
    7. Alexandre Sauquet, 2014. "Exploring the nature of inter-country interactions in the process of ratifying international environmental agreements: the case of the Kyoto Protocol," Public Choice, Springer, vol. 159(1), pages 141-158, April.
    8. Joshua C. Hall & Donald J. Lacombe & Shree B. Pokharel, 2020. "State Exit Exams and Graduation Rates: A Hierarchical SLX Modelling Approach," The Review of Regional Studies, Southern Regional Science Association, vol. 50(2), pages 189-206.
    9. Baccini, Leonardo & Lenzi, Veronica & Thurner, Paul W., 2013. "Global energy governance: trade, infrastructure, and the diffusion of international organizations," LSE Research Online Documents on Economics 62309, London School of Economics and Political Science, LSE Library.
    10. Minnie M. Joo & Brandon Bolte & Nguyen Huynh & Bumba Mukherjee, 2023. "Bayesian Spatial Split-Population Survival Model with Applications to Democratic Regime Failure and Civil War Recurrence," Mathematics, MDPI, vol. 11(8), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    2. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    3. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    4. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    5. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    6. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    7. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    8. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    9. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    10. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    11. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    12. Peter Congdon, 2011. "The Spatial Pattern of Suicide in the US in Relation to Deprivation, Fragmentation and Rurality," Urban Studies, Urban Studies Journal Limited, vol. 48(10), pages 2101-2122, August.
    13. Shadi Rahimzadeh & Beata Burczynska & Alireza Ahmadvand & Ali Sheidaei & Sara Khademioureh & Forough Pazhuheian & Sahar Saeedi Moghaddam & James Bentham & Farshad Farzadfar & Mariachiara Di Cesare, 2021. "Geographical and socioeconomic inequalities in female breast cancer incidence and mortality in Iran: A Bayesian spatial analysis of registry data," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.
    14. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    15. Marcus L. Nascimento & Kelly C. M. Gonçalves & Mario Jorge Mendonça, 2023. "Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 29-47, June.
    16. Wu, Peijie & Meng, Xianghai & Song, Li, 2021. "Bayesian space–time modeling of bicycle and pedestrian crash risk by injury severity levels to explore the long-term spatiotemporal effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    17. Samson B. Adebayo, 2004. "Bayesian geoadditive modelling of breastfeeding initiation in Nigeria," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 267-281.
    18. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    19. Haiyue Liu & Chuanyun Fu & Chaozhe Jiang & Yue Zhou & Chengyuan Mao & Jining Zhang, 2020. "Bayesian hierarchical spatial count modeling of taxi speeding events based on GPS trajectory data," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
    20. Muhammed Semakula & Franco̧is Niragire & Christel Faes, 2020. "Bayesian spatio-temporal modeling of malaria risk in Rwanda," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:amposc:v:53:y:2009:i:1:p:241-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1540-5907 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.