IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i4p654-670.html
   My bibliography  Save this article

Reliability evaluation of repairable systems considering component heterogeneity using frailty model

Author

Listed:
  • Bodunrin Brown
  • Bin Liu
  • Stuart McIntyre
  • Matthew Revie

Abstract

The failure processes of heterogeneous repairable systems with minimal repair assumption can be modelled by nonhomogeneous Poisson processes. One approach to describe an unobserved heterogeneity between systems is to multiply the intensity function by a positive random variable (frailty term) with a gamma distribution. This approach assumes that the relative frailty distribution among survivors is independent of age. Where systems are being continuously repaired and modified, the frailty distribution may be dependent on the system’s age. This paper investigates the application of the inverse Gaussian (IG) frailty model for modelling the failure processes of heterogeneous repairable systems. The IG frailty model, which combines the power law model and inverse Gaussian distribution, assumes that the relative frailty distribution among survivors becomes increasingly homogeneous over time. We develop the maximum likelihood for the IG frailty model, a method for event prediction, and investigate the effect of accuracy of the IG estimator and mis-specification of the frailty distribution through a simulation study. The mean estimates of the scale and shape parameters of the intensity function are examined for bias and efficiency loss. We find that the developed estimator is robust to changes in the input parameters for a relatively large sample sizes. We investigate the robustness of selecting an IG compared with a gamma frailty model. The developed IG model is applied to real data for illustration showing an improvement on existing models.

Suggested Citation

  • Bodunrin Brown & Bin Liu & Stuart McIntyre & Matthew Revie, 2023. "Reliability evaluation of repairable systems considering component heterogeneity using frailty model," Journal of Risk and Reliability, , vol. 237(4), pages 654-670, August.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:4:p:654-670
    DOI: 10.1177/1748006X221109341
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221109341
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221109341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kheiri, Soleiman & Kimber, Alan & Reza Meshkani, Mohammad, 2007. "Bayesian analysis of an inverse Gaussian correlated frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5317-5326, July.
    2. Loungani, Prakash, 2001. "How accurate are private sector forecasts? Cross-country evidence from consensus forecasts of output growth," International Journal of Forecasting, Elsevier, vol. 17(3), pages 419-432.
    3. Asfaw, Zeytu Gashaw & Lindqvist, Bo Henry, 2015. "Unobserved heterogeneity in the power law nonhomogeneous Poisson process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 59-65.
    4. David D. Hanagal & Richa Sharma, 2015. "Analysis of Bivariate Survival Data using Shared Inverse Gaussian Frailty Model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(7), pages 1351-1380, April.
    5. M. Chahkandi & J. Ahmadi & S. Baratpour, 2014. "Some results for repairable systems with minimal repairs," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(2), pages 218-226, March.
    6. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i11).
    7. Lin, Jing & Pulido, Julio & Asplund, Matthias, 2015. "Reliability analysis for preventive maintenance based on classical and Bayesian semi-parametric degradation approaches using locomotive wheel-sets as a case study," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 143-156.
    8. Nafisah, Ibrahim & Shrahili, Mansour & Alotaibi, Naif & Scarf, Phil, 2019. "Virtual series-system models of imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 604-613.
    9. Luiza S. C. Piancastelli & Wagner Barreto-Souza & Vinícius D. Mayrink, 2021. "Generalized inverse-Gaussian frailty models with application to TARGET neuroblastoma data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 979-1010, October.
    10. Rezgar Zaki & Abbas Barabadi & Ali Nouri Qarahasanlou & A. H. S. Garmabaki, 2019. "A mixture frailty model for maintainability analysis of mechanical components: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1646-1653, December.
    11. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," LIDAM Discussion Papers ISBA 2012005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. David Darmofal, 2009. "Bayesian Spatial Survival Models for Political Event Processes," American Journal of Political Science, John Wiley & Sons, vol. 53(1), pages 241-257, January.
    13. Slimacek, Vaclav & Lindqvist, Bo Henry, 2016. "Nonhomogeneous Poisson process with nonparametric frailty," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 14-23.
    14. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    2. Almeida, Marco Pollo & Paixão, Rafael S. & Ramos, Pedro L. & Tomazella, Vera & Louzada, Francisco & Ehlers, Ricardo S., 2020. "Bayesian non-parametric frailty model for dependent competing risks in a repairable systems framework," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Wagner Barreto-Souza & Vinícius Diniz Mayrink, 2019. "Semiparametric generalized exponential frailty model for clustered survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 679-701, June.
    4. Liu, Xingheng & Vatn, Jørn & Dijoux, Yann & Toftaker, Håkon, 2020. "Unobserved heterogeneity in stable imperfect repair models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. David D. Hanagal, 2021. "RETRACTED ARTICLE: Positive Stable Shared Frailty Models Based on Additive Hazards," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 431-453, December.
    6. Niels Keiding & Katrine Lykke Albertsen & Helene Charlotte Rytgaard & Anne Lyngholm Sørensen, 2019. "Prevalent cohort studies and unobserved heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 712-738, October.
    7. Zhao, Heng & Liu, Zixian & Li, Mei & Liang, Lijun, 2022. "Optimal monitoring policies for chronic diseases under healthcare warranty," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    8. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i11).
    9. Reza Barabadi & Mohammad Ataei & Reza Khalokakaie & Ali Nouri Qarahasanlou, 2021. "Spare-part management in a heterogeneous environment," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    10. Slimacek, Vaclav & Lindqvist, Bo Henry, 2016. "Nonhomogeneous Poisson process with nonparametric frailty," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 14-23.
    11. Harttgen, Kenneth & Lang, Stefan & Seiler, Johannes, 2019. "Selective mortality and the anthropometric status of children in low- and middle-income countries," Economics & Human Biology, Elsevier, vol. 34(C), pages 257-273.
    12. Rezgar Zaki & Abbas Barabadi & Ali Nouri Qarahasanlou & A. H. S. Garmabaki, 2019. "A mixture frailty model for maintainability analysis of mechanical components: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1646-1653, December.
    13. Giuliana Cortese & Nicola Sartori, 2016. "Integrated likelihoods in parametric survival models for highly clustered censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 382-404, July.
    14. Nihal Ata Tutkun & Diren Yeğen, 2016. "Unshared and Shared Frailty Models," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(1), pages 45-56, June.
    15. Brito, Éder S. & Tomazella, Vera L.D. & Ferreira, Paulo H., 2022. "Statistical modeling and reliability analysis of multiple repairable systems with dependent failure times under perfect repair," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Kenneth Harttgen & Stefan Lang & Johannes Seiler, 2017. "Selective mortality and undernutrition in low- and middle-income countries," Working Papers 2017-27, Faculty of Economics and Statistics, Universität Innsbruck, revised Aug 2018.
    17. Sujatro Chakladar & Samuel Rosin & Michael G. Hudgens & M. Elizabeth Halloran & John D. Clemens & Mohammad Ali & Michael E. Emch, 2022. "Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring," Biometrics, The International Biometric Society, vol. 78(2), pages 777-788, June.
    18. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," LIDAM Discussion Papers ISBA 2012005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Zeynab Allahkarami & Ahmad Reza Sayadi & Behzad Ghodrati, 2021. "Identifying the mixed effects of unobserved and observed risk factors on the reliability of mining hauling system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(2), pages 281-289, April.
    20. Jiang, Renyan & Li, Fengping & Xue, Wei & Cao, Yu & Zhang, Kunpeng, 2023. "A robust mean cumulative function estimator and its application to overhaul time optimization for a fleet of heterogeneous repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:4:p:654-670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.