IDEAS home Printed from https://ideas.repec.org/a/vrs/stintr/v20y2019i1p171-188n10.html
   My bibliography  Save this article

Survival Regression Models For Single Events And Competing Risks Based On Pseudo-Observations

Author

Listed:
  • Wycinka Ewa

    (University of Gdańsk, Faculty of Management. Gdańsk, Poland .)

  • Jurkiewicz Tomasz

    (University of Gdańsk, Faculty of Management. Gdańsk, Poland .)

Abstract

Survival data is a special type of data that measures the time to an event of interest. The most important feature of survival data is the presence of censored observations. An observation is said to be right-censored if the time of the observation is, for some reason, shorter than the time to the event. If no censoring occurs in the data, standard statistical models can be used to analyse the data. Pseudo-observations can replace censored observations and thereby allow standard statistical models to be used.

Suggested Citation

  • Wycinka Ewa & Jurkiewicz Tomasz, 2019. "Survival Regression Models For Single Events And Competing Risks Based On Pseudo-Observations," Statistics in Transition New Series, Statistics Poland, vol. 20(1), pages 171-188, March.
  • Handle: RePEc:vrs:stintr:v:20:y:2019:i:1:p:171-188:n:10
    DOI: 10.21307/stattrans-2019-010
    as

    Download full text from publisher

    File URL: https://doi.org/10.21307/stattrans-2019-010
    Download Restriction: no

    File URL: https://libkey.io/10.21307/stattrans-2019-010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Per Kragh Andersen, 2003. "Generalised linear models for correlated pseudo-observations, with applications to multi-state models," Biometrika, Biometrika Trust, vol. 90(1), pages 15-27, March.
    2. John G. T. Watkins & Andrey L. Vasnev & Richard Gerlach, 2014. "Multiple Event Incidence And Duration Analysis For Credit Data Incorporating Non‐Stochastic Loan Maturity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 627-648, June.
    3. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewa Wycinka & Tomasz Jurkiewicz, 2019. "Survival Regression Models For Single Events And Competing Risks Based On Pseudoobservations," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 171-188, March.
    2. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    3. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    4. Hao Wang & Anthony Bellotti & Rong Qu & Ruibin Bai, 2024. "Discrete-Time Survival Models with Neural Networks for Age–Period–Cohort Analysis of Credit Risk," Risks, MDPI, vol. 12(2), pages 1-26, February.
    5. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    6. Dirick, Lore & Claeskens, Gerda & Baesens, Bart, 2015. "An Akaike information criterion for multiple event mixture cure models," European Journal of Operational Research, Elsevier, vol. 241(2), pages 449-457.
    7. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    8. Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.
    9. Su, Pei-Fang & Chi, Yunchan & Li, Chung-I & Shyr, Yu & Liao, Yi-De, 2011. "Analyzing survival curves at a fixed point in time for paired and clustered right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1617-1628, April.
    10. Alvaro Arroyo & Alvaro Cartea & Fernando Moreno-Pino & Stefan Zohren, 2023. "Deep Attentive Survival Analysis in Limit Order Books: Estimating Fill Probabilities with Convolutional-Transformers," Papers 2306.05479, arXiv.org.
    11. Matthew Read & Chris Stewart & Gianni La Cava, 2014. "Mortgage-related Financial Difficulties: Evidence from Australian Micro-level Data," RBA Research Discussion Papers rdp2014-13, Reserve Bank of Australia.
    12. Cedric H. A. Koffi & Viani Biatat Djeundje & Olivier Menoukeu Pamen, 2024. "Impact of social factors on loan delinquency in microfinance," Papers 2410.13100, arXiv.org.
    13. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    14. Barbaglia, Luca & Fatica, Serena & Rho, Caterina, 2023. "Flooded credit markets: physical climate risk and small business lending," JRC Working Papers in Economics and Finance 2023-14, Joint Research Centre, European Commission.
    15. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    16. Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
    17. He, Yizeng & Kim, Soyoung & Kim, Mi-Ok & Saber, Wael & Ahn, Kwang Woo, 2021. "Optimal treatment regimes for competing risk data using doubly robust outcome weighted learning with bi-level variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    18. Bátiz-Zuk Enrique & Mohamed Abdulkadir & Sánchez-Cajal Fátima, 2021. "Exploring the sources of loan default clustering using survival analysis with frailty," Working Papers 2021-14, Banco de México.
    19. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    20. Sangbum Choi & Xuelin Huang, 2014. "Maximum likelihood estimation of semiparametric mixture component models for competing risks data," Biometrics, The International Biometric Society, vol. 70(3), pages 588-598, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:20:y:2019:i:1:p:171-188:n:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.