Deep Attentive Survival Analysis in Limit Order Books: Estimating Fill Probabilities with Convolutional-Transformers
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lorenzo Lucchese & Mikko Pakkanen & Almut Veraart, 2022. "The Short-Term Predictability of Returns in Order Book Markets: a Deep Learning Perspective," Papers 2211.13777, arXiv.org, revised Oct 2023.
- Philippe Bergault & Fayçal Drissi & Olivier Guéant, 2022. "Multi-asset Optimal Execution and Statistical Arbitrage Strategies under Ornstein--Uhlenbeck Dynamics," Post-Print hal-03885142, HAL.
- Philippe Bergault & Fayçal Drissi & Olivier Guéant, 2022.
"Multi-asset Optimal Execution and Statistical Arbitrage Strategies under Ornstein--Uhlenbeck Dynamics,"
Post-Print
hal-03680071, HAL.
- Philippe Bergault & Fayçal Drissi & Olivier Guéant, 2022. "Multi-asset Optimal Execution and Statistical Arbitrage Strategies under Ornstein--Uhlenbeck Dynamics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03680071, HAL.
- B. Larivière & D. Van Den Poel, 2004. "Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/223, Ghent University, Faculty of Economics and Business Administration.
- Fayc{c}al Drissi, 2022. "Solvability of Differential Riccati Equations and Applications to Algorithmic Trading with Signals," Papers 2202.07478, arXiv.org, revised Aug 2023.
- Fernando Moreno-Pino & Stefan Zohren, 2022. "DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions," Papers 2210.04797, arXiv.org, revised Aug 2024.
- Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
- Fayçal Drissi, 2022. "Solvability of Differential Riccati Equations and Applications to Algorithmic Trading with Signals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 29(6), pages 457-493, November.
- Álvaro Cartea & Sebastian Jaimungal & Yixuan Wang, 2020. "Spoofing and Price Manipulation in Order-Driven Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(1-2), pages 67-98, July.
- Philippe Bergault & Fayc{c}al Drissi & Olivier Gu'eant, 2021. "Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics," Papers 2103.13773, arXiv.org, revised Mar 2022.
- Lo, Andrew W. & MacKinlay, A. Craig & Zhang, June, 2002.
"Econometric models of limit-order executions,"
Journal of Financial Economics, Elsevier, vol. 65(1), pages 31-71, July.
- Andrew W. Lo & A. Craig MacKinlay & June Zhang, "undated". "Econometric Models of Limit-Order Executions," Rodney L. White Center for Financial Research Working Papers 12-99, Wharton School Rodney L. White Center for Financial Research.
- Andrew W. Lo & A. Craig MacKinlay & June Zhang, 1997. "Econometric Models of Limit-Order Executions," NBER Working Papers 6257, National Bureau of Economic Research, Inc.
- Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
- Álvaro Cartea & Ryan Donnelly & Sebastian Jaimungal, 2018. "Enhancing trading strategies with order book signals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 1-35, January.
- Handa, Puneet & Schwartz, Robert A, 1996. "Limit Order Trading," Journal of Finance, American Finance Association, vol. 51(5), pages 1835-1861, December.
- Zoltán Eisler & Jean-Philippe Bouchaud & Julien Kockelkoren, 2012. "The price impact of order book events: market orders, limit orders and cancellations," Quantitative Finance, Taylor & Francis Journals, vol. 12(9), pages 1395-1419, September.
- Zihao Zhang & Stefan Zohren, 2021. "Multi-Horizon Forecasting for Limit Order Books: Novel Deep Learning Approaches and Hardware Acceleration using Intelligent Processing Units," Papers 2105.10430, arXiv.org, revised Aug 2021.
- Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- 'Alvaro Cartea & Gerardo Duran-Martin & Leandro S'anchez-Betancourt, 2023. "Detecting Toxic Flow," Papers 2312.05827, arXiv.org.
- Timoth'ee Fabre & Vincent Ragel, 2023. "Interpretable ML for High-Frequency Execution," Papers 2307.04863, arXiv.org, revised Sep 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- 'Alvaro Cartea & Fayc{c}al Drissi & Marcello Monga, 2023. "Decentralised Finance and Automated Market Making: Predictable Loss and Optimal Liquidity Provision," Papers 2309.08431, arXiv.org, revised Jun 2024.
- Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
- 'Alvaro Cartea & Fayc{c}al Drissi & Marcello Monga, 2023. "Decentralised Finance and Automated Market Making: Execution and Speculation," Papers 2307.03499, arXiv.org, revised Jul 2024.
- Marcel Nutz & Kevin Webster & Long Zhao, 2023. "Unwinding Stochastic Order Flow: When to Warehouse Trades," Papers 2310.14144, arXiv.org.
- Gao, Xuefeng & Xu, Tianrun, 2022. "Order scoring, bandit learning and order cancellations," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022.
"Specification Choices in Quantile Regression for Empirical Macroeconomics,"
Working Papers
22-25, Federal Reserve Bank of Cleveland.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2024. "Specification Choices in Quantile Regression for Empirical Macroeconomics," CEPR Discussion Papers 18901, C.E.P.R. Discussion Papers.
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Michael W. McCracken & Michael T. Owyang & Tatevik Sekhposyan, 2021.
"Real-Time Forecasting and Scenario Analysis Using a Large Mixed-Frequency Bayesian VAR,"
International Journal of Central Banking, International Journal of Central Banking, vol. 17(71), pages 1-41, December.
- Michael W. McCracken & Michael T. Owyang & Tatevik Sekhposyan, 2015. "Real-Time Forecasting and Scenario Analysis using a Large Mixed-Frequency Bayesian VAR," Working Papers 2015-030, Federal Reserve Bank of St. Louis, revised 10 Apr 2020.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
- James Mitchell & Aubrey Poon & Dan Zhu, 2024.
"Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
- James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
- Jackson, Emerson Abraham & Tamuke, Edmund, 2018. "Probability Forecast Using Fan Chart Analysis: A case of the Sierra Leone Economy," MPRA Paper 88853, University Library of Munich, Germany, revised 04 Sep 2018.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2020. "Large Time-Varying Volatility Models for Electricity Prices," Working Papers No 05/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014.
"Causality and predictability in distribution: The ethanol–food price relation revisited,"
Energy Economics, Elsevier, vol. 42(C), pages 152-160.
- Marzio GALEOTTI & Andrea BASTIANIN & Matteo MANERA, 2013. "Food versus Fuel: Causality and Predictability in Distribution," Departmental Working Papers 2013-10, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Food versus Fuel: Causality and Predictability in Distribution," Working Papers 2013.23, Fondazione Eni Enrico Mattei.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Food versus Fuel: Causality and Predictability in Distribution," IEFE Working Papers 56, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Food versus Fuel: Causality and Predictability in Distribution," Working Papers 241, University of Milano-Bicocca, Department of Economics, revised Mar 2013.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2024.
"Investigating Growth-at-Risk Using a Multicountry Nonparametric Quantile Factor Model,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1302-1317, October.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model," Papers 2110.03411, arXiv.org.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2023. "Investigating Growth-at-Risk Using a Multicountry Non-parametric Quantile Factor Model," CEPR Discussion Papers 18549, C.E.P.R. Discussion Papers.
- Todd Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model," Working Papers 2307, University of Strathclyde Business School, Department of Economics.
- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-07-17 (Big Data)
- NEP-MST-2023-07-17 (Market Microstructure)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.05479. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.