IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v37y2021i3p611-653n9.html
   My bibliography  Save this article

Spatio-Temporal Patterns in Portuguese Regional Fertility Rates: A Bayesian Approach for Spatial Clustering of Curves

Author

Listed:
  • Zhang Zhen

    (Eli Lilly and Company, Indianapolis Indiana, U.S.A.)

  • Bhattacharjee Arnab

    (Heriot-Watt University and National Institute of Economic and Social Research, Spatial Economics and Econometrics Centre. (SEEC), Mary Burton Building, Edinburgh EH14 4AS, Scotland, United Kingdom.)

  • Marques João

    (University of Aveiro, Department of Social, Political and Territorial Sciences, Averiro, Portugal.)

  • Maiti Tapabrata

    (Michigan State University, Department of Statistics and Probability, East Lansing Michigan, U.S.A.)

Abstract

It is important for demographic analyses and policy-making to obtain accurate models of spatial diffusion, so that policy experiments can reflect endogenous spatial spillovers appropriately. Likewise, it is important to obtain accurate estimates and forecasts of demographic variables such as age-specific fertility rates, by regions and over time, as well as the uncertainty associated with such estimation. Here, we consider Bayesian hierarchical models with separable spatio-temporal dependence structure that can be estimated by borrowing strength from neighbouring regions and all years. Further, we do not consider the adjacency structure as a given, but rather as an object of inference. For this purpose, we use the local similarity of temporal patterns by developing a spatial clustering model based on Bayesian nonparametric smoothing techniques. The Bayesian inference provides the uncertainty associated with the clustering configurations that is typically lacking in classical analyses of large data sets in which a unique clustering representation can be insufficient. The proposed model is applied to 16-year data on age-specific fertility rates observed over 28 regions in Portugal, and provides statistical inference on the number of clusters, and local scaling and shrinkage levels. The corresponding central clustering configuration is able to capture spatial diffusion that has key demographic interpretations. Importantly, the exercise aids identification of peripheral regions with poor demographic prospects and development of regional policy for such places.

Suggested Citation

  • Zhang Zhen & Bhattacharjee Arnab & Marques João & Maiti Tapabrata, 2021. "Spatio-Temporal Patterns in Portuguese Regional Fertility Rates: A Bayesian Approach for Spatial Clustering of Curves," Journal of Official Statistics, Sciendo, vol. 37(3), pages 611-653, September.
  • Handle: RePEc:vrs:offsta:v:37:y:2021:i:3:p:611-653:n:9
    DOI: 10.2478/jos-2021-0028
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2021-0028
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2021-0028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. C. Billari & R. Graziani & E. Melilli, 2012. "Stochastic population forecasts based on conditional expert opinions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 491-511, April.
    2. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    3. Riccardo Borgoni & Francesco Billari, 2003. "Bayesian spatial analysis of demographic survey data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 8(3), pages 61-92.
    4. Bhattacharjee, Arnab & Maiti, Taps & Petrie, Dennis, 2014. "General equilibrium effects of spatial structure: Health outcomes and health behaviours in Scotland," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 286-297.
    5. Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
    6. Fabio Divino & Viviana Egidi & Michele Antonio Salvatore, 2009. "Geographical mortality patterns in Italy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 20(18), pages 435-466.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.
    2. Demirel, Duygun Fatih & Basak, Melek, 2019. "A fuzzy bi-level method for modeling age-specific migration," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    3. Tongzheng Pu & Chongxing Huang & Jingjing Yang & Ming Huang, 2023. "Transcending Time and Space: Survey Methods, Uncertainty, and Development in Human Migration Prediction," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    4. Nico Keilman, 2018. "Probabilistic demographic forecasts," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 16(1), pages 025-035.
    5. Gianni Corsetti & Marco Marsili, 2013. "Previsioni stocastiche della popolazione nell’ottica di un Istituto Nazionale di Statistica," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(2-3), pages 5-29.
    6. Sudatta Bharati Mohapatra & Nirmal Chandra Kar, 2022. "Revisiting the Long-Run Dynamic Linkage between Dividends and Share Price with Advanced Panel Econometrics Techniques," JRFM, MDPI, vol. 15(10), pages 1-19, October.
    7. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
    8. Chadha, Jagjit S., 2022. "Foreward: bridge to normality," National Institute UK Economic Outlook, National Institute of Economic and Social Research, vol. 0(1 Winter), pages 1-3.
    9. Gopal K. Basak & Arnab Bhattacharjee & Samarjit Das, 2018. "Causal ordering and inference on acyclic networks," Empirical Economics, Springer, vol. 55(1), pages 213-232, August.
    10. Kapetanios, George & Price, Simon & Tasiou, Menelaos & Ventouri, Alexia, 2021. "State-level wage Phillips curves," Econometrics and Statistics, Elsevier, vol. 18(C), pages 1-11.
    11. Chadha, Jagjit S., 2023. "Foreword," National Institute Global Economic Outlook, National Institute of Economic and Social Research, issue 9, pages 1-3.
    12. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    13. Arnab Bhattacharjee & Sudipto Roy, 2019. "Abnormal Returns or Mismeasured Risk? Network Effects and Risk Spillover in Stock Returns," JRFM, MDPI, vol. 12(2), pages 1-13, March.
    14. Kucuk, Hande & Lenoel, Cyrille & MacQueen, Rory, 2021. "UK sectoral output," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 2, pages 33-41.
    15. Arturas Juodis & Simon Reese, 2018. "The Incidental Parameters Problem in Testing for Remaining Cross-section Correlation," Papers 1810.03715, arXiv.org, revised Feb 2021.
    16. Arnab Bhattacharjee & Adrian Pabst & Tibor Szendrei & Geoffrey J. D. Hewings, 2024. "NiReMS: A regional model at household level combining spatial econometrics with dynamic microsimulation," Spatial Economic Analysis, Taylor & Francis Journals, vol. 19(3), pages 436-461, July.
    17. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    18. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    19. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    20. Xueqian Song & Yongping Wei & Wei Deng & Shaoyao Zhang & Peng Zhou & Ying Liu & Jiangjun Wan, 2019. "Spatio-Temporal Distribution, Spillover Effects and Influences of China’s Two Levels of Public Healthcare Resources," IJERPH, MDPI, vol. 16(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:37:y:2021:i:3:p:611-653:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.