IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v20y2009i18.html
   My bibliography  Save this article

Geographical mortality patterns in Italy

Author

Listed:
  • Fabio Divino

    (Università degli Studi del Molise)

  • Viviana Egidi

    (Università degli Studi di Roma La Sapienza)

  • Michele Antonio Salvatore

    (Istituto Nazionale di Statistica (ISTAT))

Abstract

In this paper, we present a hierarchical spatial model for the analysis of geographical variation in mortality between the Italian provinces in the year 2001, according to gender, age class, and cause of death. When analysing counts data specific to geographical locations, classical empirical rates or standardised mortality ratios may produce estimates that show a very high level of overdispersion due to the effect of spatial autocorrelation among the observations, and due to the presence of heterogeneity among the population sizes. We adopt a Bayesian approach and a Markov chain Monte Carlo computation with the goal of making more consistent inferences about the quantities of interest. While considering information for the year 1991, we also take into account a temporal effect from the previous geographical pattern. Results have demonstrated the flexibility of our proposal in evaluating specific aspects of a counts spatial process, such as the clustering effect and the heterogeneity effect.

Suggested Citation

  • Fabio Divino & Viviana Egidi & Michele Antonio Salvatore, 2009. "Geographical mortality patterns in Italy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 20(18), pages 435-466.
  • Handle: RePEc:dem:demres:v:20:y:2009:i:18
    DOI: 10.4054/DemRes.2009.20.18
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol20/18/20-18.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2009.20.18?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    2. Graziella Caselli & Rosa Maria Lipsi, 2006. "Survival differences among the oldest old in Sardinia: who, what, where, and why?," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 14(13), pages 267-294.
    3. Ian H. Langford & Alistair H. Leyland & Jon Rasbash & Harvey Goldstein, 1999. "Multilevel Modelling of the Geographical Distributions of Diseases," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(2), pages 253-268.
    4. Fabio Divino & Arnoldo Frigessi & Peter J. Green, 2000. "Penalized Pseudolikelihood Inference in Spatial Interaction Models with Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(3), pages 445-458, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrique Regidor & Laura Reques & Carolina Giráldez-García & Estrella Miqueleiz & Juana M Santos & David Martínez & Luis de la Fuente, 2015. "The Association of Geographic Coordinates with Mortality in People with Lower and Higher Education and with Mortality Inequalities in Spain," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    2. Vanessa Santos S�nchez & Gabriele Ruiu & Lucia Pozzi & Marco Breschi & Giovanna Gonano, 2020. "Geographical variations in mortality and unemployment in Italy," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 74(2), pages 109-120, April-Jun.
    3. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.
    4. Lanfiuti Baldi, Giacomo & Nigri, Andrea & Trias-Llimos, Sergi & Barbi, Elisabetta, 2025. "The decline of ‘Deaths of Despair’ in Italy: unveiling this phenomenon in a new context," SocArXiv jnq2e, Center for Open Science.
    5. Queiroz, Bernardo L & Lima, Everton & Freire, Flávio & Gonzaga, Marcos Roberto, 2017. "Temporal and spatial estimates of adult mortality for small areas in Brazil, 1980-2010," OSF Preprints jk67t, Center for Open Science.
    6. Zhang Zhen & Bhattacharjee Arnab & Marques João & Maiti Tapabrata, 2021. "Spatio-Temporal Patterns in Portuguese Regional Fertility Rates: A Bayesian Approach for Spatial Clustering of Curves," Journal of Official Statistics, Sciendo, vol. 37(3), pages 611-653, September.
    7. Gonzaga, Marcos Roberto & Queiroz, Bernardo L & Monteiro da Silva, José H C & Lima, Everton & Júnio, Walter P. Silva & DIOGENES, VICTOR HUGO DIAS & Flores-Ortiz, Renzo & da Costa, Lilia Carolina Carne, 2022. "Estimation and projection of probabilistic age- and sex-specific mortality rates across Brazilian municipalities between 2010 and 2030," OSF Preprints egrc9, Center for Open Science.
    8. Sieds, 2020. "Complete Volume LXXIV n. 1 2020," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 74(2), pages 1-123, April-Jun.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    2. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    3. Joel Karlsson & Jonas Månsson, 2014. "Getting a full-time job as a part-time unemployed: How much does spatial context matter?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 179-195, August.
    4. Congdon, Peter, 2007. "Mixtures of spatial and unstructured effects for spatially discontinuous health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3197-3212, March.
    5. Marco Alfò & Cecilia Vitiello, 2003. "Finite mixtures approach to ecological regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 93-108, February.
    6. Guanpeng Dong & Richard Harris & Kelvyn Jones & Jianhui Yu, 2015. "Multilevel Modelling with Spatial Interaction Effects with Application to an Emerging Land Market in Beijing, China," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-18, June.
    7. Congdon, P., 2007. "Bayesian modelling strategies for spatially varying regression coefficients: A multivariate perspective for multiple outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2586-2601, February.
    8. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    9. Maksim Belitski & Sameeksha Desai, 2016. "What drives ICT clustering in European cities?," The Journal of Technology Transfer, Springer, vol. 41(3), pages 430-450, June.
    10. Matthew Quick, 2019. "Multiscale spatiotemporal patterns of crime: a Bayesian cross-classified multilevel modelling approach," Journal of Geographical Systems, Springer, vol. 21(3), pages 339-365, September.
    11. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    12. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    13. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    14. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    15. Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
    16. Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
    17. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    18. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    19. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    20. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.

    More about this item

    Keywords

    hierarchical spatio-temporal model; clustering effect; heterogeneity effect; relative risks;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:20:y:2009:i:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.