Croatian First Football League: Teams' performance in the championship
Author
Abstract
Suggested Citation
DOI: 10.1515/crebss-2016-0006
Download full text from publisher
References listed on IDEAS
- I. D. Hill, 1974. "Association Football and Statistical Inference," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 23(2), pages 203-208, June.
- Siem Jan Koopman & Rutger Lit, 2015.
"A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 167-186, January.
- Siem Jan Koopman & Rutger Lit, 2012. "A Dynamic Bivariate Poisson Model for Analysing and Forecasting Match Results in the English Premier League," Tinbergen Institute Discussion Papers 12-099/III, Tinbergen Institute.
- M. J. Maher, 1982. "Modelling association football scores," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 36(3), pages 109-118, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dagaev Dmitry & Rudyak Vladimir Yu., 2019.
"Seeding the UEFA Champions League participants: evaluation of the reforms,"
Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(2), pages 129-140, June.
- Dmitry Dagaev & Vladimir Yu. Rudyak, 2016. "Seeding the UEFA Champions League Participants: Evaluation of the Reform," HSE Working papers WP BRP 129/EC/2016, National Research University Higher School of Economics.
- da Costa, Igor Barbosa & Marinho, Leandro Balby & Pires, Carlos Eduardo Santos, 2022. "Forecasting football results and exploiting betting markets: The case of “both teams to score”," International Journal of Forecasting, Elsevier, vol. 38(3), pages 895-909.
- Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
- Lasek, Jan & Gagolewski, Marek, 2021. "Interpretable sports team rating models based on the gradient descent algorithm," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1061-1071.
- Leonardo Egidi & Ioannis Ntzoufras, 2020. "A Bayesian quest for finding a unified model for predicting volleyball games," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1307-1336, November.
- Siem Jan Koopman & Rutger Lit & André Lucas, 2014. "The Dynamic Skellam Model with Applications," Tinbergen Institute Discussion Papers 14-032/IV/DSF73, Tinbergen Institute, revised 06 Jul 2015.
- Hvattum, Lars Magnus & Arntzen, Halvard, 2010. "Using ELO ratings for match result prediction in association football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 460-470, July.
- P. Gorgi & S. J. Koopman & R. Lit, 2023.
"Estimation of final standings in football competitions with a premature ending: the case of COVID-19,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 233-250, March.
- Paolo Gorgi & Siem Jan Koopman & Rutger Lit, 2020. "Estimation of final standings in football competitions with premature ending: the case of COVID-19," Tinbergen Institute Discussion Papers 20-070/III, Tinbergen Institute.
- Ioannis Asimakopoulos & John Goddard, 2004. "Forecasting football results and the efficiency of fixed-odds betting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(1), pages 51-66.
- Gross, Johannes & Rebeggiani, Luca, 2018.
"Chance or Ability? The Efficiency of the Football Betting Market Revisited,"
MPRA Paper
87230, University Library of Munich, Germany.
- Rebeggiani, Luca & Gross, Johannes, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181563, Verein für Socialpolitik / German Economic Association.
- Robert C. Smit & Francesco Ravazzolo & Luca Rossini, 2020. "Dynamic Bayesian forecasting of English Premier League match results with the Skellam distribution," BEMPS - Bozen Economics & Management Paper Series BEMPS72, Faculty of Economics and Management at the Free University of Bozen.
- Jiřà LahviÄ ka, 2015. "The Impact of Playoffs on Seasonal Uncertainty in the Czech Ice Hockey Extraliga," Journal of Sports Economics, , vol. 16(7), pages 784-801, October.
- Holmes, Benjamin & McHale, Ian G., 2024. "Forecasting football match results using a player rating based model," International Journal of Forecasting, Elsevier, vol. 40(1), pages 302-312.
- Giovanni Angelini & Luca De Angelis, 2017.
"PARX model for football match predictions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 795-807, November.
- Giovanni Angelini & Luca De Angelis, 2016. "PARX model for football matches predictions," Quaderni di Dipartimento 2, Department of Statistics, University of Bologna.
- Raffaele Mattera, 2023. "Forecasting binary outcomes in soccer," Annals of Operations Research, Springer, vol. 325(1), pages 115-134, June.
- Holmes, Benjamin & McHale, Ian G. & Żychaluk, Kamila, 2023. "A Markov chain model for forecasting results of mixed martial arts contests," International Journal of Forecasting, Elsevier, vol. 39(2), pages 623-640.
- Scarf, Philip & Yusof, Muhammad Mat & Bilbao, Mark, 2009. "A numerical study of designs for sporting contests," European Journal of Operational Research, Elsevier, vol. 198(1), pages 190-198, October.
- Luke S. Benz & Michael J. Lopez, 2023. "Estimating the change in soccer’s home advantage during the Covid-19 pandemic using bivariate Poisson regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 205-232, March.
- Koning, Ruud H. & Koolhaas, Michael & Renes, Gusta & Ridder, Geert, 2003.
"A simulation model for football championships,"
European Journal of Operational Research, Elsevier, vol. 148(2), pages 268-276, July.
- Koning, Ruud H. & Koolhaas, Michael & Renes, Gusta, 2001. "A simulation model for football championships," Research Report 01A65, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
- Schwarz Wolf, 2012. "Predicting the Maximum Lead from Final Scores in Basketball: A Diffusion Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(4), pages 1-15, November.
More about this item
Keywords
football; performance monitoring; Poisson distribution; predictive analytics; simulation; sports analytics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:crebss:v:2:y:2016:i:1:p:15-23:n:2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.