IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v69y2020i5p1307-1336.html
   My bibliography  Save this article

A Bayesian quest for finding a unified model for predicting volleyball games

Author

Listed:
  • Leonardo Egidi
  • Ioannis Ntzoufras

Abstract

Volleyball is a team sport with unique and specific characteristics. We introduce a new two‐level hierarchical Bayesian model which accounts for these volleyball‐specific characteristics. In the first level, we model the set outcome with a simple logistic regression model. Conditionally on the winner of the set, in the second level, we use a truncated negative binomial distribution for the points earned by the losing team. An additional Poisson‐distributed inflation component is introduced to model the extra points played in the case that the two teams have a point difference less than two points. The number of points of the winner within each set is deterministically specified by the winner of the set and the points of the inflation component. The team‐specific abilities and the home effect are used as covariates on all layers of the model (set, point and extra inflated points). The implementation of the proposed model on the Italian SuperLega 2017–2018 data shows exceptional reproducibility of the final league table and satisfactory predictive ability.

Suggested Citation

  • Leonardo Egidi & Ioannis Ntzoufras, 2020. "A Bayesian quest for finding a unified model for predicting volleyball games," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1307-1336, November.
  • Handle: RePEc:bla:jorssc:v:69:y:2020:i:5:p:1307-1336
    DOI: 10.1111/rssc.12436
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12436
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Siem Jan Koopman & Rutger Lit, 2015. "A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 167-186, January.
    2. K. Papadimitriou & E. Pashali & I. Sermaki & S. Mellas & M. Papas, 2004. "The effect of the opponents’ serve on the offensive actions of Greek setters in volleyball games," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 4(1), pages 23-33, August.
    3. M. J. Maher, 1982. "Modelling association football scores," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 36(3), pages 109-118, September.
    4. Hendrik Sonnabend, 2020. "On discouraging environments in team contests: Evidence from top‐level beach volleyball," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(6), pages 986-997, September.
    5. K. T. Lee & S. T. Chin, 2004. "Strategies to serve or receive the service in volleyball," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(1), pages 53-67, February.
    6. M.‐H. Chen & J. G. Ibrahim & C. Yiannoutsos, 1999. "Prior elicitation, variable selection and Bayesian computation for logistic regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 223-242.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    8. Fellingham Gilbert W. & Hinkle Lee J. & Hunter Iain, 2013. "Importance of attack speed in volleyball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(1), pages 87-96, March.
    9. Cohen-Zada, Danny & Krumer, Alex & Shapir, Offer Moshe, 2018. "Testing the effect of serve order in tennis tiebreak," Journal of Economic Behavior & Organization, Elsevier, vol. 146(C), pages 106-115.
    10. Shonkwiler, J.S., 2016. "Variance of the truncated negative binomial distribution," Journal of Econometrics, Elsevier, vol. 195(2), pages 209-210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dagaev Dmitry & Rudyak Vladimir Yu., 2019. "Seeding the UEFA Champions League participants: evaluation of the reforms," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(2), pages 129-140, June.
    2. da Costa, Igor Barbosa & Marinho, Leandro Balby & Pires, Carlos Eduardo Santos, 2022. "Forecasting football results and exploiting betting markets: The case of “both teams to score”," International Journal of Forecasting, Elsevier, vol. 38(3), pages 895-909.
    3. Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
    4. Lasek, Jan & Gagolewski, Marek, 2021. "Interpretable sports team rating models based on the gradient descent algorithm," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1061-1071.
    5. Siem Jan Koopman & Rutger Lit & André Lucas, 2014. "The Dynamic Skellam Model with Applications," Tinbergen Institute Discussion Papers 14-032/IV/DSF73, Tinbergen Institute, revised 06 Jul 2015.
    6. P. Gorgi & S. J. Koopman & R. Lit, 2023. "Estimation of final standings in football competitions with a premature ending: the case of COVID-19," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 233-250, March.
    7. Robert C. Smit & Francesco Ravazzolo & Luca Rossini, 2020. "Dynamic Bayesian forecasting of English Premier League match results with the Skellam distribution," BEMPS - Bozen Economics & Management Paper Series BEMPS72, Faculty of Economics and Management at the Free University of Bozen.
    8. Jiří LahviÄ ka, 2015. "The Impact of Playoffs on Seasonal Uncertainty in the Czech Ice Hockey Extraliga," Journal of Sports Economics, , vol. 16(7), pages 784-801, October.
    9. Holmes, Benjamin & McHale, Ian G., 2024. "Forecasting football match results using a player rating based model," International Journal of Forecasting, Elsevier, vol. 40(1), pages 302-312.
    10. Giovanni Angelini & Luca De Angelis, 2017. "PARX model for football match predictions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 795-807, November.
    11. Munđar Dušan & Šimić Diana, 2016. "Croatian First Football League: Teams' performance in the championship," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 2(1), pages 15-23, September.
    12. Raffaele Mattera, 2023. "Forecasting binary outcomes in soccer," Annals of Operations Research, Springer, vol. 325(1), pages 115-134, June.
    13. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    14. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    15. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    16. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    17. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    18. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    19. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    20. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:69:y:2020:i:5:p:1307-1336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.