IDEAS home Printed from https://ideas.repec.org/a/tec/journl/v5y2020i1p185-216.html
   My bibliography  Save this article

A systematic frame work of schedule risk management for power grid engineering projects,sustainable development

Author

Listed:
  • Wajiha Ansari

    (MBA Student Karachi University Business School, University of Karachi Pakistan)

  • Muhammad Asim

    (Chairperson Karachi University Business School, University of Karachi, Pakistan)

  • Salman Manzoor

    (Education and Literacy Department, Government of Sindh, Pakistan)

Abstract

Design dangers are the key risk for extraordinary viability of timetable organization in (PGEP). This paper intends to manufacture a methodically system for design RM, which comprises of three measurements, including the work force measurement, technique measurement and time measurement, explicitly supervisory faculty, the executives strategies and the development procedure, consistently. Responsibilities of staff with different capacities are examined in the supervisory faculty part, and six phases and their concurring 40 key works are guaranteed as the time measurement. RI, assessment, appraisal and expectation together framed the technique measurement. In view of this foundation, 222 planned dangers happen in the entire procedure of PGEPs are distinguished through questionnaires and interviews. At that point, the connection among each hazard is made sense of dependent on the Interpretative Structure Model (ISM) technique and the effect of each hazard is quantitatively surveyed by setting up assessment framework. The genuine act of the planned system is checked through the investigation of the primary phase of a PGEP. At long last, the outcomes show that this structure of planned RM is significant for refining the productivity of PM. It gives administrators a more clear methodology with which to lead RM encourages them to opportune recognize chances and keep dangers from happening. It is likewise simple for administrators to pass judgment on the impact level of each hazard, so they can take activities dependent on the degree of each hazard's seriousness. Generally speaking, it is gainful for power lattice endeavours to accomplish a feasible administration.

Suggested Citation

  • Wajiha Ansari & Muhammad Asim & Salman Manzoor, 2020. "A systematic frame work of schedule risk management for power grid engineering projects,sustainable development," Technium Social Sciences Journal, Technium Science, vol. 5(1), pages 185-216, March.
  • Handle: RePEc:tec:journl:v:5:y:2020:i:1:p:185-216
    as

    Download full text from publisher

    File URL: https://techniumscience.com/index.php/socialsciences/article/view/167/102
    Download Restriction: no

    File URL: https://techniumscience.com/index.php/socialsciences/article/view/167
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. H. M. Tah & V. Carr, 2000. "A proposal for construction project risk assessment using fuzzy logic," Construction Management and Economics, Taylor & Francis Journals, vol. 18(4), pages 491-500.
    2. Aven, T. & Vinnem, J.E. & Wiencke, H.S., 2007. "A decision framework for risk management, with application to the offshore oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 433-448.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholamreza Dehdasht & Rosli Mohamad Zin & M. Salim Ferwati & Mu’azu Mohammed Abdullahi & Ali Keyvanfar & Ronald McCaffer, 2017. "DEMATEL-ANP Risk Assessment in Oil and Gas Construction Projects," Sustainability, MDPI, vol. 9(8), pages 1-24, August.
    2. Rao Rao & Xingping Zhang & Zhiping Shi & Kaiyan Luo & Zhongfu Tan & Yifan Feng, 2014. "A Systematical Framework of Schedule Risk Management for Power Grid Engineering Projects’ Sustainable Development," Sustainability, MDPI, vol. 6(10), pages 1-30, October.
    3. Aleksandar Senić & Momčilo Dobrodolac & Zoran Stojadinović, 2024. "Predicting Extension of Time and Increasing Contract Price in Road Infrastructure Projects Using a Sugeno Fuzzy Logic Model," Mathematics, MDPI, vol. 12(18), pages 1-22, September.
    4. Hani Alyami & Paul Tae-Woo Lee & Zaili Yang & Ramin Riahi & Stephen Bonsall & Jin Wang, 2014. "An advanced risk analysis approach for container port safety evaluation," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(7), pages 634-650, December.
    5. Aven, Terje, 2008. "A semi-quantitative approach to risk analysis, as an alternative to QRAs," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 790-797.
    6. Patricia Romero-Lankao & Daniel M. Gnatz & Olga Wilhelmi & Mary Hayden, 2016. "Urban Sustainability and Resilience: From Theory to Practice," Sustainability, MDPI, vol. 8(12), pages 1-19, November.
    7. Abraham Park & Chen Yu Chang, 2013. "Impacts of Construction Events on the Project Equity Value of the Channel Tunnel Project," ERES eres2013_97, European Real Estate Society (ERES).
    8. Usama H. Issa & Ashraf Balabel & Mohammed Abdelhakeem & Medhat M. A. Osman, 2021. "Developing a Risk Model for Assessment and Control of the Spread of COVID-19," Risks, MDPI, vol. 9(2), pages 1-15, February.
    9. Hardaker, J. Brian & Fleming, Euan M. & Lien, Gudbrand D., 2008. "Risk in Public Policy Making: A Neglected Issue in Australia," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 5997, Australian Agricultural and Resource Economics Society.
    10. Sørskår, Leif Inge K. & Selvik, Jon T. & Abrahamsen, Eirik B., 2019. "On the use of the vision zero principle and the ALARP principle for production loss in the oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    11. Terje Aven, 2014. "The substitution principle in chemical regulation: a constructive critique, by Ragnar Löfstedt," Journal of Risk Research, Taylor & Francis Journals, vol. 17(5), pages 569-571, May.
    12. Usama Issa & Ibrahim Sharaky & Mamdooh Alwetaishi & Ashraf Balabel & Amal Shamseldin & Ahmed Abdelhafiz & Mohammed Al-Surf & Mosleh Al-Harthi & Medhat M. A. Osman, 2021. "Developing and Applying a Model for Evaluating Risks Affecting Greening Existing Buildings," Sustainability, MDPI, vol. 13(11), pages 1-21, June.
    13. Sabriye Topal & Emine Atasoylu, 2022. "A Fuzzy Risk Assessment Model for Small Scale Construction Work," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    14. Cabrera Llanos, Agustín I. & Ortiz Arango, Francisco & Dávila Aragón, Griselda, 2022. "Caracterización de la productividad de una empresa mexicana desarrolladora de tecnología mediante control difuso [Characterization of the productivity of a Mexican technology development company th," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 34(1), pages 281-304, December.
    15. Fjæran Nygaard, L. & Aven, T., 2010. "On the link between risk perspectives and risk regulation—A comparison between two cases concerning base stations and wireless networks," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 689-697.
    16. Alsulieman, Abdullah & Ge, Xihe & Zeng, Zhiguo & Butenko, Sergiy & Khan, Faisal & El-Halwagi, Mahmoud, 2024. "Dynamic risk analysis of evolving scenarios in oil and gas separator," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Ning Wang & Cheng-shun Xu & Xiu-li Du & Ming-ju Zhang, 2018. "A risk assessment method of deep excavation based on Bayesian analysis and expert elicitation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(2), pages 452-466, April.
    18. Aven, Terje & Castro, I.T., 2009. "A delay-time model with safety constraint," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 261-267.
    19. Yuan Yang, 2019. "Reforming Health, Safety, and Environmental Regulation for Offshore Operations in China: Risk and Resilience Approaches?," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    20. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Selvik, Jon Tømmerås, 2020. "On the importance of systems thinking when using the ALARP principle for risk management," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    More about this item

    Keywords

    power grid engineering project; schedule management; risk management; Interpretative Structure Model; Analytic Hierarchy Process;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tec:journl:v:5:y:2020:i:1:p:185-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tasente Tanase (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.