IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v41y2018i1p80-103.html
   My bibliography  Save this article

Development of railway station choice models to improve the representation of station catchments in rail demand models

Author

Listed:
  • Marcus A. Young
  • Simon P. Blainey

Abstract

This paper describes the development of railway station choice models suitable for defining probabilistic station catchments. These catchments can then be incorporated into the aggregate demand models typically used to forecast demand for new rail stations. Revealed preference passenger survey data obtained from the Welsh and Scottish Governments was used for model calibration. Techniques were developed to identify trip origins and destinations from incomplete address information and to automatically validate reported trips. A bespoke trip planner was used to derive mode-specific station access variables and train leg measures. The results from a number of multinomial logit and random parameter (mixed) logit models are presented and their predictive performance assessed. The models were found to have substantially superior predictive accuracy compared to the base model (which assumes the nearest station has a probability of one), indicating that their incorporation into passenger demand forecasting methods has the potential to significantly improve model predictive performance.

Suggested Citation

  • Marcus A. Young & Simon P. Blainey, 2018. "Development of railway station choice models to improve the representation of station catchments in rail demand models," Transportation Planning and Technology, Taylor & Francis Journals, vol. 41(1), pages 80-103, January.
  • Handle: RePEc:taf:transp:v:41:y:2018:i:1:p:80-103
    DOI: 10.1080/03081060.2018.1403745
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2018.1403745
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2018.1403745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Lythgoe & M. Wardman, 2004. "Modelling passenger demand for parkway rail stations," Transportation, Springer, vol. 31(2), pages 125-151, May.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, January.
    3. Ho, Chinh Q. & Hensher, David A., 2016. "A workplace choice model accounting for spatial competition and agglomeration effects," Journal of Transport Geography, Elsevier, vol. 51(C), pages 193-203.
    4. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    2. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    3. Hasnine, Md Sami & Graovac, Ana & Camargo, Felipe & Habib, Khandker Nurul, 2019. "A random utility maximization (RUM) based measure of accessibility to transit: Accurate capturing of the first-mile issue in urban transit," Journal of Transport Geography, Elsevier, vol. 74(C), pages 313-320.
    4. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    5. Haque, Md Bashirul & Choudhury, Charisma & Hess, Stephane, 2020. "Understanding differences in residential location preferences between ownership and renting: A case study of London," Journal of Transport Geography, Elsevier, vol. 88(C).
    6. Shen, Yu & de Abreu e Silva, João & Martínez, Luis Miguel, 2014. "Assessing High-Speed Rail’s impacts on land cover change in large urban areas based on spatial mixed logit methods: a case study of Madrid Atocha railway station from 1990 to 2006," Journal of Transport Geography, Elsevier, vol. 41(C), pages 184-196.
    7. Marzano, Vittorio & Papola, Andrea & Simonelli, Fulvio & Vitillo, Roberta, 2013. "A practically tractable expression of the covariances of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 1-11.
    8. Perez-Lopez, Jose-Benito & Novales, Margarita & Orro, Alfonso, 2022. "Spatially correlated nested logit model for spatial location choice," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 1-12.
    9. Rezaei, Ali & Patterson, Zachary, 2018. "Preference stability in household location choice: Using cross-sectional data from three censuses," Research in Transportation Economics, Elsevier, vol. 67(C), pages 44-53.
    10. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    11. Ho, Chinh Q. & Hensher, David A. & Ellison, Richard, 2017. "Endogenous treatment of residential location choices in transport and land use models: Introducing the MetroScan framework," Journal of Transport Geography, Elsevier, vol. 64(C), pages 120-131.
    12. Stefano Mainardi, 2021. "Preference heterogeneity, neighbourhood effects and basic services: logit kernel models for farmers’ climate adaptation in Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6869-6912, May.
    13. Ibeas, Ángel & Cordera, Ruben & dell’Olio, Luigi & Coppola, Pierluigi, 2013. "Modelling the spatial interactions between workplace and residential location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 110-122.
    14. Zhifeng Gao & Ted C. Schroeder, 2009. "Consumer responses to new food quality information: are some consumers more sensitive than others?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 339-346, May.
    15. Cheng, Leilei & Yin, Changbin & Chien, Hsiaoping, 2015. "Demand for milk quantity and safety in urban China: evidence from Beijing and Harbin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    16. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    17. Johannes Buggle & Thierry Mayer & Seyhun Orcan Sakalli & Mathias Thoenig, 2023. "The Refugee’s Dilemma: Evidence from Jewish Migration out of Nazi Germany," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 1273-1345.
    18. Christelis, Dimitris & Dobrescu, Loretti I. & Motta, Alberto, 2020. "Early life conditions and financial risk-taking in older age," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    19. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    20. Tina Birgitte Hansen & Jes Sanddal Lindholt & Axel Diederichsen & Rikke Søgaard, 2019. "Do Non-participants at Screening have a Different Threshold for an Acceptable Benefit–Harm Ratio than Participants? Results of a Discrete Choice Experiment," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 12(5), pages 491-501, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:41:y:2018:i:1:p:80-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.