Solving comprehensive dynamic job shop scheduling problem by using a GRASP-based approach
Author
Abstract
Suggested Citation
DOI: 10.1080/00207543.2017.1306134
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sabuncuoglu, I. & Bayiz, M., 2000. "Analysis of reactive scheduling problems in a job shop environment," European Journal of Operational Research, Elsevier, vol. 126(3), pages 567-586, November.
- Sabuncuoglu, I. & Karapinar, H. Y., 1999. "Analysis of order review/release problems in production systems," International Journal of Production Economics, Elsevier, vol. 62(3), pages 259-279, September.
- Vinod, V. & Sridharan, R., 2011. "Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 127-146, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yu Pu & Fang Li & Shahin Rahimifard, 2024. "Multi-Agent Reinforcement Learning for Job Shop Scheduling in Dynamic Environments," Sustainability, MDPI, vol. 16(8), pages 1-26, April.
- Ali Fırat İnal & Çağrı Sel & Adnan Aktepe & Ahmet Kürşad Türker & Süleyman Ersöz, 2023. "A Multi-Agent Reinforcement Learning Approach to the Dynamic Job Shop Scheduling Problem," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
- Zachariah Stevenson & Ricardo Fukasawa & Luis Ricardez-Sandoval, 2020. "Evaluating periodic rescheduling policies using a rolling horizon framework in an industrial-scale multipurpose plant," Journal of Scheduling, Springer, vol. 23(3), pages 397-410, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jürgen Strohhecker & Michael Hamann & Jörn-Henrik Thun, 2016. "Loading and sequencing heuristics for job scheduling on two unrelated parallel machines with long, sequence-dependent set-up times," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6747-6767, November.
- Chuang Wang & Pingyu Jiang, 2019. "Deep neural networks based order completion time prediction by using real-time job shop RFID data," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1303-1318, March.
- Henrich, Peter & Land, Martin & Gaalman, Gerard, 2006. "Grouping machines for effective workload control," International Journal of Production Economics, Elsevier, vol. 104(1), pages 125-142, November.
- Tanja Mlinar & Philippe Chevalier, 2016.
"Pooling heterogeneous products for manufacturing environments,"
4OR, Springer, vol. 14(2), pages 173-200, June.
- MLINAR, Tanja & CHEVALIER, Philippe, 2016. "Pooling Heterogeneous Products for Manufacturing Environments," LIDAM Reprints CORE 2744, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Stevenson, Mark & Hendry, Linda C., 2006. "Aggregate load-oriented workload control: A review and a re-classification of a key approach," International Journal of Production Economics, Elsevier, vol. 104(2), pages 676-693, December.
- Zhang, Rui & Song, Shiji & Wu, Cheng, 2013. "A hybrid artificial bee colony algorithm for the job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 167-178.
- Hum, Sin-Hoon & Parlar, Mahmut & Zhou, Yun, 2018. "Measurement and optimization of responsiveness in supply chain networks with queueing structures," European Journal of Operational Research, Elsevier, vol. 264(1), pages 106-118.
- A. S. Xanthopoulos & D. E. Koulouriotis, 2018. "Cluster analysis and neural network-based metamodeling of priority rules for dynamic sequencing," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 69-91, January.
- Matthias Thürer & Mark Stevenson, 2016. "Workload control in job shops with re-entrant flows: an assessment by simulation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5136-5150, September.
- Keivan Rahimi-Adli & Egidio Leo & Benedikt Beisheim & Sebastian Engell, 2021. "Optimisation of the Operation of an Industrial Power Plant under Steam Demand Uncertainty," Energies, MDPI, vol. 14(21), pages 1-28, November.
- Belinda Spratt & Erhan Kozan, 2021. "An integrated rolling horizon approach to increase operating theatre efficiency," Journal of Scheduling, Springer, vol. 24(1), pages 3-25, February.
- Aijun Liu & John Fowler & Michele Pfund, 2016. "Dynamic co-ordinated scheduling in the supply chain considering flexible routes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 322-335, January.
- Fernandes, Nuno O. & Thürer, Matthias & Silva, Cristóvão & Carmo-Silva, Sílvio, 2017. "Improving workload control order release: Incorporating a starvation avoidance trigger into continuous release," International Journal of Production Economics, Elsevier, vol. 194(C), pages 181-189.
- Cauvin, A.C.A. & Ferrarini, A.F.A. & Tranvouez, E.T.E., 2009. "Disruption management in distributed enterprises: A multi-agent modelling and simulation of cooperative recovery behaviours," International Journal of Production Economics, Elsevier, vol. 122(1), pages 429-439, November.
- Thürer, Matthias & Stevenson, Mark & Land, Martin J., 2016. "On the integration of input and output control: Workload Control order release," International Journal of Production Economics, Elsevier, vol. 174(C), pages 43-53.
- Hendry, L. & Land, M. & Stevenson, M. & Gaalman, G., 2008. "Investigating implementation issues for workload control (WLC): A comparative case study analysis," International Journal of Production Economics, Elsevier, vol. 112(1), pages 452-469, March.
- Bing Wang & Xingbao Han & Xianxia Zhang & Shaohua Zhang, 2015. "Predictive-reactive scheduling for single surgical suite subject to random emergency surgery," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 949-966, November.
- MLINAR, Tanja B. & CHEVALIER, Philippe, 2013. "Pooling in manufacturing: do opposites attract?," LIDAM Discussion Papers CORE 2013040, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pürgstaller, Peter & Missbauer, Hubert, 2012. "Rule-based vs. optimisation-based order release in workload control: A simulation study of a MTO manufacturer," International Journal of Production Economics, Elsevier, vol. 140(2), pages 670-680.
- Cenk Sahin & Melek Demirtas & Rizvan Erol & Adil Baykasoğlu & Vahit Kaplanoğlu, 2017. "A multi-agent based approach to dynamic scheduling with flexible processing capabilities," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1827-1845, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:11:p:3308-3325. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.