IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v24y2021i1d10.1007_s10951-020-00655-6.html
   My bibliography  Save this article

An integrated rolling horizon approach to increase operating theatre efficiency

Author

Listed:
  • Belinda Spratt

    (Queensland University of Technology)

  • Erhan Kozan

    (Queensland University of Technology)

Abstract

Demand for healthcare is increasing rapidly. To meet demand, we must improve the efficiency of our public health services. We present a mixed integer programming formulation that simultaneously tackles the integrated master surgical schedule and surgical case assignment problems under a modified block scheduling policy. That is, we allocate specialties, surgeons, and patients to surgical time blocks. We consider volatile surgical durations and non-elective arrivals while applying a rolling horizon approach to adjust the schedule after cancellations, equipment failure, or new arrivals on the waiting list. The model is based on a case study of an Australian public hospital with a large surgical department. The formulation includes significant detail and provides practitioners with a globally implementable model. We produce good feasible solutions in short amounts of computational time with a constructive heuristic and two hyper-metaheuristics. Using a rolling horizon schedule increases patient throughput and can help reduce waiting lists.

Suggested Citation

  • Belinda Spratt & Erhan Kozan, 2021. "An integrated rolling horizon approach to increase operating theatre efficiency," Journal of Scheduling, Springer, vol. 24(1), pages 3-25, February.
  • Handle: RePEc:spr:jsched:v:24:y:2021:i:1:d:10.1007_s10951-020-00655-6
    DOI: 10.1007/s10951-020-00655-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-020-00655-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-020-00655-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alessandro Agnetis & Alberto Coppi & Matteo Corsini & Gabriella Dellino & Carlo Meloni & Marco Pranzo, 2014. "A decomposition approach for the combined master surgical schedule and surgical case assignment problems," Health Care Management Science, Springer, vol. 17(1), pages 49-59, March.
    2. Sabuncuoglu, I. & Bayiz, M., 2000. "Analysis of reactive scheduling problems in a job shop environment," European Journal of Operational Research, Elsevier, vol. 126(3), pages 567-586, November.
    3. Bernardetta Addis & Giuliana Carello & Andrea Grosso & Elena Tànfani, 2016. "Operating room scheduling and rescheduling: a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 206-232, June.
    4. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    5. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    6. Filippo Visintin & Paola Cappanera & Carlo Banditori, 2016. "Evaluating the impact of flexible practices on the master surgical scheduling process: an empirical analysis," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 182-205, June.
    7. Shuwan Zhu & Wenjuan Fan & Tongzhu Liu & Shanlin Yang & Panos M. Pardalos, 2020. "Dynamic three-stage operating room scheduling considering patient waiting time and surgical overtime costs," Journal of Combinatorial Optimization, Springer, vol. 39(1), pages 185-215, January.
    8. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    9. Jie Bai & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2018. "Operations research in intensive care unit management: a literature review," Health Care Management Science, Springer, vol. 21(1), pages 1-24, March.
    10. Mullen, Penelope M., 2003. "Prioritising waiting lists: how and why?," European Journal of Operational Research, Elsevier, vol. 150(1), pages 32-45, October.
    11. Rahimian, Erfan & Akartunalı, Kerem & Levine, John, 2017. "A hybrid Integer Programming and Variable Neighbourhood Search algorithm to solve Nurse Rostering Problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 411-423.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Mariana Oliveira & Filippo Visintin & Daniel Santos & Inês Marques, 2022. "Flexible master surgery scheduling: combining optimization and simulation in a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 824-858, December.
    3. Akbarzadeh, Babak & Maenhout, Broos, 2024. "A study on policy decisions to embed flexibility for reactive recovery in the planning and scheduling process in operating rooms," Omega, Elsevier, vol. 126(C).
    4. Omolbanin Mashkani & Andreas T. Ernst & Dhananjay Thiruvady & Hanyu Gu, 2023. "Minimizing patients total clinical condition deterioration in operating theatre departments," Annals of Operations Research, Springer, vol. 328(1), pages 821-857, September.
    5. Marques, Inês & Captivo, M. Eugénia, 2017. "Different stakeholders’ perspectives for a surgical case assignment problem: Deterministic and robust approaches," European Journal of Operational Research, Elsevier, vol. 261(1), pages 260-278.
    6. Lien Wang & Erik Demeulemeester & Nancy Vansteenkiste & Frank E. Rademakers, 2022. "On the use of partitioning for scheduling of surgeries in the inpatient surgical department," Health Care Management Science, Springer, vol. 25(4), pages 526-550, December.
    7. Rachuba, Sebastian & Imhoff, Lisa & Werners, Brigitte, 2022. "Tactical blueprints for surgical weeks – An integrated approach for operating rooms and intensive care units," European Journal of Operational Research, Elsevier, vol. 298(1), pages 243-260.
    8. F. Davarian & J. Behnamian, 2022. "Robust finite-horizon scheduling/rescheduling of operating rooms with elective and emergency surgeries under resource constraints," Journal of Scheduling, Springer, vol. 25(6), pages 625-641, December.
    9. Sara Ceschia & Rosita Guido & Andrea Schaerf, 2020. "Solving the static INRC-II nurse rostering problem by simulated annealing based on large neighborhoods," Annals of Operations Research, Springer, vol. 288(1), pages 95-113, May.
    10. Jian-Jun Wang & Zongli Dai & Wenxuan Zhang & Jim Junmin Shi, 2023. "Operating room scheduling for non-operating room anesthesia with emergency uncertainty," Annals of Operations Research, Springer, vol. 321(1), pages 565-588, February.
    11. Akbarzadeh, Babak & Moslehi, Ghasem & Reisi-Nafchi, Mohammad & Maenhout, Broos, 2019. "The re-planning and scheduling of surgical cases in the operating room department after block release time with resource rescheduling," European Journal of Operational Research, Elsevier, vol. 278(2), pages 596-614.
    12. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    13. Gökalp, E. & Gülpınar, N. & Doan, X.V., 2023. "Dynamic surgery management under uncertainty," European Journal of Operational Research, Elsevier, vol. 309(2), pages 832-844.
    14. Babak Akbarzadeh & Ghasem Moslehi & Mohammad Reisi-Nafchi & Broos Maenhout, 2020. "A diving heuristic for planning and scheduling surgical cases in the operating room department with nurse re-rostering," Journal of Scheduling, Springer, vol. 23(2), pages 265-288, April.
    15. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    16. Javiera Barrera & Rodrigo A. Carrasco & Susana Mondschein & Gianpiero Canessa & David Rojas-Zalazar, 2020. "Operating room scheduling under waiting time constraints: the Chilean GES plan," Annals of Operations Research, Springer, vol. 286(1), pages 501-527, March.
    17. Shao, Kaining & Fan, Wenjuan & Lan, Shaowen & Kong, Min & Yang, Shanlin, 2023. "A column generation-based heuristic for brachytherapy patient scheduling with multiple treatment sessions considering radioactive source decay and time constraints," Omega, Elsevier, vol. 118(C).
    18. Shehadeh, Karmel S. & Padman, Rema, 2021. "A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity," European Journal of Operational Research, Elsevier, vol. 290(3), pages 901-913.
    19. Veneklaas, W. & Leeftink, A.G. & van Boekel, P.H.C.M. & Hans, E.W., 2021. "On the design, implementation, and feasibility of hospital admission services: The admission lounge case," Omega, Elsevier, vol. 100(C).
    20. Roberto Aringhieri & Patrick Hirsch & Marion S. Rauner & Melanie Reuter-Oppermanns & Margit Sommersguter-Reichmann, 2022. "Central European journal of operations research (CJOR) “operations research applied to health services (ORAHS) in Europe: general trends and ORAHS 2020 conference in Vienna, Austria”," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:24:y:2021:i:1:d:10.1007_s10951-020-00655-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.