IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i8d10.1007_s10845-015-1069-x.html
   My bibliography  Save this article

A multi-agent based approach to dynamic scheduling with flexible processing capabilities

Author

Listed:
  • Cenk Sahin

    (Cukurova University)

  • Melek Demirtas

    (Cukurova University)

  • Rizvan Erol

    (Cukurova University)

  • Adil Baykasoğlu

    (Dokuz Eylul University)

  • Vahit Kaplanoğlu

    (Gaziantep University)

Abstract

A multi-agent based system is proposed to simultaneous scheduling of flexible machine groups and material handling system working under a manufacturing dynamic environment. The proposed model is designed by means of $$\hbox {Prometheus}^{\mathrm{TM}}$$ Prometheus TM methodology and programmed in $$\hbox {JACK}^{\mathrm{TM}}$$ JACK TM agent based systems development environment. Each agent in the model is autonomous and has an ability to cooperate and negotiate with the other agents in the system. Due to these abilities of agents, the structure of the system is more suitable to handle dynamic events. The proposed dynamic scheduling system is tested on several test problems the literature and the results are quite satisfactory because it generates effective schedules for both dynamic cases in the real time and static problem sets. Although the model is designed as an online method and has a dynamic structure, obtained schedule performance parameters are very close to those obtained from offline optimization based algorithms.

Suggested Citation

  • Cenk Sahin & Melek Demirtas & Rizvan Erol & Adil Baykasoğlu & Vahit Kaplanoğlu, 2017. "A multi-agent based approach to dynamic scheduling with flexible processing capabilities," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1827-1845, December.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:8:d:10.1007_s10845-015-1069-x
    DOI: 10.1007/s10845-015-1069-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1069-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1069-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ümit Bilge & Gündüz Ulusoy, 1995. "A Time Window Approach to Simultaneous Scheduling of Machines and Material Handling System in an FMS," Operations Research, INFORMS, vol. 43(6), pages 1058-1070, December.
    2. Wahab, M.I.M. & Wu, Desheng & Lee, Chi-Guhn, 2008. "A generic approach to measuring the machine flexibility of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 186(1), pages 137-149, April.
    3. Vinod, V. & Sridharan, R., 2011. "Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 127-146, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satheeshkumar Veeramani & Sreekumar Muthuswamy & Keerthi Sagar & Matteo Zoppi, 2020. "Artificial intelligence planners for multi-head path planning of SwarmItFIX agents," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 815-832, April.
    2. Ping Lou & Yutong Zhong & Jiwei Hu & Chuannian Fan & Xiao Chen, 2023. "Digital-Twin-Driven AGV Scheduling and Routing in Automated Container Terminals," Mathematics, MDPI, vol. 11(12), pages 1-25, June.
    3. Anran Zhao & Peng Liu & Xiyu Gao & Guotai Huang & Xiuguang Yang & Yuan Ma & Zheyu Xie & Yunfeng Li, 2022. "Data-Mining-Based Real-Time Optimization of the Job Shop Scheduling Problem," Mathematics, MDPI, vol. 10(23), pages 1-30, December.
    4. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seebacher, Gottfried & Winkler, Herwig, 2014. "Evaluating flexibility in discrete manufacturing based on performance and efficiency," International Journal of Production Economics, Elsevier, vol. 153(C), pages 340-351.
    2. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    3. Xiangtong Qi, 2005. "A logistics scheduling model: Inventory cost reduction by batching," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 312-320, June.
    4. Chuang Wang & Pingyu Jiang, 2019. "Deep neural networks based order completion time prediction by using real-time job shop RFID data," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1303-1318, March.
    5. Tanja Mlinar & Philippe Chevalier, 2016. "Pooling heterogeneous products for manufacturing environments," 4OR, Springer, vol. 14(2), pages 173-200, June.
    6. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    7. James T. Lin & Chun-Chih Chiu & Edward Huang & Hung-Ming Chen, 2018. "A Multi-Fidelity Model Approach for Simultaneous Scheduling of Machines and Vehicles in Flexible Manufacturing Systems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-20, February.
    8. Le-Anh, T. & de Koster, M.B.M., 2004. "A Review Of Design And Control Of Automated Guided Vehicle Systems," ERIM Report Series Research in Management ERS;2004-030-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Al-Hinai, Nasr & ElMekkawy, T.Y., 2011. "Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm," International Journal of Production Economics, Elsevier, vol. 132(2), pages 279-291, August.
    10. Arash Amirteimoori & Reza Kia, 2023. "Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 727-753, September.
    11. Zhang, Rui & Song, Shiji & Wu, Cheng, 2013. "A hybrid artificial bee colony algorithm for the job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 167-178.
    12. A. S. Xanthopoulos & D. E. Koulouriotis, 2018. "Cluster analysis and neural network-based metamodeling of priority rules for dynamic sequencing," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 69-91, January.
    13. Tamayo-Torres, Javier & Gutierrez-Gutierrez, Leopoldo & Ruiz-Moreno, Antonia, 2014. "The relationship between exploration and exploitation strategies, manufacturing flexibility and organizational learning: An empirical comparison between Non-ISO and ISO certified firms," European Journal of Operational Research, Elsevier, vol. 232(1), pages 72-86.
    14. Yun, Lingxiang & Li, Lin & Ma, Shuaiyin, 2022. "Demand response for manufacturing systems considering the implications of fast-charging battery powered material handling equipment," Applied Energy, Elsevier, vol. 310(C).
    15. Mohamed Dia & Amirmohsen Golmohammadi & Pawoumodom M. Takouda, 2020. "Relative Efficiency of Canadian Banks: A Three-Stage Network Bootstrap DEA," JRFM, MDPI, vol. 13(4), pages 1-25, April.
    16. Yao, Shiqing & Jiang, Zhibin & Li, Na & Zhang, Huai & Geng, Na, 2011. "A multi-objective dynamic scheduling approach using multiple attribute decision making in semiconductor manufacturing," International Journal of Production Economics, Elsevier, vol. 130(1), pages 125-133, March.
    17. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    18. Mohammad Reza Komari Alaei & Mehmet Soysal & Atabak Elmi & Audrius Banaitis & Nerija Banaitiene & Reza Rostamzadeh & Shima Javanmard, 2021. "A Bender’s Algorithm of Decomposition Used for the Parallel Machine Problem of Robotic Cell," Mathematics, MDPI, vol. 9(15), pages 1-15, July.
    19. Wahab, M.I.M. & Stoyan, S.J., 2008. "A dynamic approach to measure machine and routing flexibilities of manufacturing systems," International Journal of Production Economics, Elsevier, vol. 113(2), pages 895-913, June.
    20. E. Borgonovo & L. Peccati, 2011. "Managerial insights from service industry models: a new scenario decomposition method," Annals of Operations Research, Springer, vol. 185(1), pages 161-179, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:8:d:10.1007_s10845-015-1069-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.