Digital twin model-driven capacity evaluation and scheduling optimization for ship welding production line
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-023-02212-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jinfeng Liu & Peng Zhao & Xuwen Jing & Xuwu Cao & Sushan Sheng & Honggen Zhou & Xiaojun Liu & Feng Feng, 2022. "Dynamic design method of digital twin process model driven by knowledge-evolution machining features," International Journal of Production Research, Taylor & Francis Journals, vol. 60(7), pages 2312-2330, April.
- Chengjun Xu & Guobin Zhu, 2021. "Intelligent manufacturing Lie Group Machine Learning: real-time and efficient inspection system based on fog computing," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 237-249, January.
- Adil Baykasoğlu & Fatma S. Karaslan, 2017. "Solving comprehensive dynamic job shop scheduling problem by using a GRASP-based approach," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3308-3325, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zachariah Stevenson & Ricardo Fukasawa & Luis Ricardez-Sandoval, 2020. "Evaluating periodic rescheduling policies using a rolling horizon framework in an industrial-scale multipurpose plant," Journal of Scheduling, Springer, vol. 23(3), pages 397-410, June.
- Yu Pu & Fang Li & Shahin Rahimifard, 2024. "Multi-Agent Reinforcement Learning for Job Shop Scheduling in Dynamic Environments," Sustainability, MDPI, vol. 16(8), pages 1-26, April.
- Ali Fırat İnal & Çağrı Sel & Adnan Aktepe & Ahmet Kürşad Türker & Süleyman Ersöz, 2023. "A Multi-Agent Reinforcement Learning Approach to the Dynamic Job Shop Scheduling Problem," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
More about this item
Keywords
Welding production line; Digital twin; Capacity evaluation; Scheduling optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02212-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.