IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v141y2013i2p685-697.html
   My bibliography  Save this article

Flexible job shop scheduling with due window—a two-pheromone ant colony approach

Author

Listed:
  • Huang, Rong-Hwa
  • Yang, Chang-Lin
  • Cheng, Wei-Che

Abstract

Recently, the companies reduce the manufacturing costs and increase capacity efficiency in the competitive environment. Therefore, to balance workstation loading, the hybrid production system is necessary, so that, the flexible job shop system is the most common production system, and there are parallel machines in each workstation. In this study, the due window and the sequential dependent setup time of jobs are considered. To satisfy the customers’ requirement, and reduce the cost of the storage costs at the same time, the sum of the earliness and tardiness costs is the objective. In this study, to improve the traditional ant colony system, we developed the two pheromone ant colony optimization (2PH-ACO) to approach the flexible job shop scheduling problem. Computational results indicate that 2PH-ACO performs better than ACO in terms of sum of earliness and tardiness time.

Suggested Citation

  • Huang, Rong-Hwa & Yang, Chang-Lin & Cheng, Wei-Che, 2013. "Flexible job shop scheduling with due window—a two-pheromone ant colony approach," International Journal of Production Economics, Elsevier, vol. 141(2), pages 685-697.
  • Handle: RePEc:eee:proeco:v:141:y:2013:i:2:p:685-697
    DOI: 10.1016/j.ijpe.2012.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527312004525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2012.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hani, Y. & Amodeo, L. & Yalaoui, F. & Chen, H., 2007. "Ant colony optimization for solving an industrial layout problem," European Journal of Operational Research, Elsevier, vol. 183(2), pages 633-642, December.
    2. R-H Huang & C-L Yang & H-T Huang, 2010. "Parallel machine scheduling with common due windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 640-646, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Shuenn-Ren, 2014. "Some new problems on two-agent scheduling to minimize the earliness costs," International Journal of Production Economics, Elsevier, vol. 156(C), pages 24-30.
    2. Jiae Zhang & Jianjun Yang, 2016. "Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: an industrial application," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4894-4918, August.
    3. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.
    4. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    5. Mohamed Kriouich & Hicham Sarir, 2024. "Artificial Intelligence Application in Production Scheduling Problem Systematic Literature Review: Bibliometric Analysis, Research Trend, and Knowledge Taxonomy," SN Operations Research Forum, Springer, vol. 5(2), pages 1-24, June.
    6. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    7. Li, Xinyu & Gao, Liang, 2016. "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 174(C), pages 93-110.
    8. Yang, Dar-Li & Lai, Chien-Jung & Yang, Suh-Jenq, 2014. "Scheduling problems with multiple due windows assignment and controllable processing times on a single machine," International Journal of Production Economics, Elsevier, vol. 150(C), pages 96-103.
    9. Julien Autuori & Faicel Hnaien & Farouk Yalaoui, 2016. "A mapping technique for better solution exploration: NSGA-II adaptation," Journal of Heuristics, Springer, vol. 22(1), pages 89-123, February.
    10. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    2. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
    3. Komarudin & Wong, Kuan Yew, 2010. "Applying Ant System for solving Unequal Area Facility Layout Problems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 730-746, May.
    4. I. Jerin Leno & S. Saravana Sankar & S. G. Ponnambalam, 2018. "MIP model and elitist strategy hybrid GA–SA algorithm for layout design," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 369-387, February.
    5. Jerzy Grobelny & Rafal Michalski, 2015. "Comparative analysis of regular grid based algorithms in the design of graphical control panels," WORking papers in Management Science (WORMS) WORMS/15/03, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    6. Gerstl, Enrique & Mosheiov, Gur, 2013. "Due-window assignment with identical jobs on parallel uniform machines," European Journal of Operational Research, Elsevier, vol. 229(1), pages 41-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:141:y:2013:i:2:p:685-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.