IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v22y2016i1d10.1007_s10732-015-9303-4.html
   My bibliography  Save this article

A mapping technique for better solution exploration: NSGA-II adaptation

Author

Listed:
  • Julien Autuori

    (Université de Technologie de Troyes)

  • Faicel Hnaien

    (Université de Technologie de Troyes)

  • Farouk Yalaoui

    (Université de Technologie de Troyes)

Abstract

A mapping method (MaM) for a better solution space exploration adapted to NSGA-II method is presented. The Mapping technique divides the solution space into several zones using a Hamming distance to a reference solution. We present a bijective mapping function from the search space to the binary representation space of solutions. For each zone, a mapping metric is used to evaluate the solution space exploration. According to this evaluation, a local search is performed. The mapping is adapted to the well known non-dominated sorting genetic algorithm-II (NSGA-II) method applied to solve the flexible job shop problem (FJSP) case. We present the comparison between the hybridization using the local search for the non-dominated solutions and the hybridization using the mapping metrics. The multi-objective metrics show the efficiency of mapping adaptation in terms of convergence and diversity.

Suggested Citation

  • Julien Autuori & Faicel Hnaien & Farouk Yalaoui, 2016. "A mapping technique for better solution exploration: NSGA-II adaptation," Journal of Heuristics, Springer, vol. 22(1), pages 89-123, February.
  • Handle: RePEc:spr:joheur:v:22:y:2016:i:1:d:10.1007_s10732-015-9303-4
    DOI: 10.1007/s10732-015-9303-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-015-9303-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-015-9303-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kacem, Imed & Hammadi, Slim & Borne, Pierre, 2002. "Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 60(3), pages 245-276.
    2. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    3. Huang, Rong-Hwa & Yang, Chang-Lin & Cheng, Wei-Che, 2013. "Flexible job shop scheduling with due window—a two-pheromone ant colony approach," International Journal of Production Economics, Elsevier, vol. 141(2), pages 685-697.
    4. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    2. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.
    3. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    4. Jiae Zhang & Jianjun Yang, 2016. "Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: an industrial application," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4894-4918, August.
    5. J. Christopher Beck & T. K. Feng & Jean-Paul Watson, 2011. "Combining Constraint Programming and Local Search for Job-Shop Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 1-14, February.
    6. Chiang, Tsung-Che & Lin, Hsiao-Jou, 2013. "A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling," International Journal of Production Economics, Elsevier, vol. 141(1), pages 87-98.
    7. González, Miguel A. & Vela, Camino R. & Varela, Ramiro, 2015. "Scatter search with path relinking for the flexible job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 35-45.
    8. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
    9. Xiong, Jian & Xing, Li-ning & Chen, Ying-wu, 2013. "Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns," International Journal of Production Economics, Elsevier, vol. 141(1), pages 112-126.
    10. Chong Peng & Guanglin Wu & T Warren Liao & Hedong Wang, 2019. "Research on multi-agent genetic algorithm based on tabu search for the job shop scheduling problem," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-19, September.
    11. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    12. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    13. Po-Hsiang Lu & Muh-Cherng Wu & Hao Tan & Yong-Han Peng & Chen-Fu Chen, 2018. "A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 19-34, January.
    14. Wei Xiong & Dongmei Fu, 2018. "A new immune multi-agent system for the flexible job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 857-873, April.
    15. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    16. Ho, Nhu Binh & Tay, Joc Cing & Lai, Edmund M.-K., 2007. "An effective architecture for learning and evolving flexible job-shop schedules," European Journal of Operational Research, Elsevier, vol. 179(2), pages 316-333, June.
    17. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    18. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2018. "Solving the flexible job shop scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(2), pages 503-516.
    19. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    20. Oliveira, Jose Antonio, 2007. "Scheduling the truckload operations in automatic warehouses," European Journal of Operational Research, Elsevier, vol. 179(3), pages 723-735, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:22:y:2016:i:1:d:10.1007_s10732-015-9303-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.