IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v133y2001i3p548-556.html
   My bibliography  Save this article

Fuzzy goal programming with different importance and priorities

Author

Listed:
  • Chen, Liang-Hsuan
  • Tsai, Feng-Chou

Abstract

No abstract is available for this item.

Suggested Citation

  • Chen, Liang-Hsuan & Tsai, Feng-Chou, 2001. "Fuzzy goal programming with different importance and priorities," European Journal of Operational Research, Elsevier, vol. 133(3), pages 548-556, September.
  • Handle: RePEc:eee:ejores:v:133:y:2001:i:3:p:548-556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(00)00201-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Romero, Carlos, 1984. "A note--Effects of five sided penalty functions in goal programming," Omega, Elsevier, vol. 12(4), pages 333-333.
    2. Inuiguchi, Masahiro & Kume, Yasufumi, 1991. "Goal programming problems with interval coefficients and target intervals," European Journal of Operational Research, Elsevier, vol. 52(3), pages 345-360, June.
    3. Kvanli, Alan H, 1980. "Financial planning using goal programming," Omega, Elsevier, vol. 8(2), pages 207-218.
    4. Sinha, S. B. & Rao, K. A. & Mangaraj, B. K., 1988. "Fuzzy goal programming in multi-criteria decision systems: A case study in agricultural planning," Socio-Economic Planning Sciences, Elsevier, vol. 22(2), pages 93-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cherif, Mohamed Sadok & Chabchoub, Habib & Aouni, Belaid, 2008. "Quality control system design through the goal programming model and the satisfaction functions," European Journal of Operational Research, Elsevier, vol. 186(3), pages 1084-1098, May.
    2. Hamalainen, Raimo P. & Mantysaari, Juha, 2002. "Dynamic multi-objective heating optimization," European Journal of Operational Research, Elsevier, vol. 142(1), pages 1-15, October.
    3. Yaghoobi, M.A. & Tamiz, M., 2007. "A method for solving fuzzy goal programming problems based on MINMAX approach," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1580-1590, March.
    4. Jana, R.K. & Sharma, Dinesh K. & Chakraborty, B., 2016. "A hybrid probabilistic fuzzy goal programming approach for agricultural decision-making," International Journal of Production Economics, Elsevier, vol. 173(C), pages 134-141.
    5. Aouni, Belaid & Kettani, Ossama, 2001. "Goal programming model: A glorious history and a promising future," European Journal of Operational Research, Elsevier, vol. 133(2), pages 225-231, January.
    6. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    7. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
    8. Oliveira, Carla & Antunes, Carlos Henggeler, 2011. "A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal," Energy, Elsevier, vol. 36(5), pages 2856-2866.
    9. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    10. Tom Rihm & Philipp Baumann, 2018. "Staff assignment with lexicographically ordered acceptance levels," Journal of Scheduling, Springer, vol. 21(2), pages 167-189, April.
    11. Carla Oliveira Henriques & Dulce Helena Coelho & Maria Elisabete Duarte Neves, 2022. "Investment planning in energy efficiency programs: a portfolio based approach," Operational Research, Springer, vol. 22(1), pages 615-649, March.
    12. Kharrat, Aida & Chabchoub, Habib & Aouni, Belaid & Smaoui, Soulef, 2007. "Serial correlation estimation through the imprecise Goal Programming model," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1839-1851, March.
    13. Chang, Ching-Ter, 2007. "Binary fuzzy goal programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 29-37, July.
    14. Aouni, Belaid & Colapinto, Cinzia & La Torre, Davide, 2014. "Financial portfolio management through the goal programming model: Current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 234(2), pages 536-545.
    15. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    16. Sharma, Dinesh K. & Jana, R.K., 2009. "Fuzzy goal programming based genetic algorithm approach to nutrient management for rice crop planning," International Journal of Production Economics, Elsevier, vol. 121(1), pages 224-232, September.
    17. Henriques, C.O. & Luque, M. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, L.A., 2019. "A multiobjective interval programming model to explore the trade-offs among different aspects of job satisfaction under different scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 35-46.
    18. Debjani Chakraborti, 2016. "Evolutionary technique based goal programming approach to chance constrained interval valued bilevel programming problems," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 390-408, June.
    19. M. Ortuño & B. Vitoriano, 2011. "A goal programming approach for farm planning with resources dimensionality," Annals of Operations Research, Springer, vol. 190(1), pages 181-199, October.
    20. Francisco Guijarro, 2019. "Assessing the Impact of Road Traffic Externalities on Residential Price Values: A Case Study in Madrid, Spain," IJERPH, MDPI, vol. 16(24), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:133:y:2001:i:3:p:548-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.