IDEAS home Printed from https://ideas.repec.org/a/taf/specan/v12y2017i2-3p304-325.html
   My bibliography  Save this article

About predictions in spatial autoregressive models: optimal and almost optimal strategies

Author

Listed:
  • Michel Goulard
  • Thibault Laurent
  • Christine Thomas-Agnan

Abstract

About predictions in spatial autoregressive models: optimal and almost optimal strategies. Spatial Economic Analysis. This paper addresses the problem of prediction in the spatial autoregressive (SAR) model for areal data, which is classically used in spatial econometrics. With kriging theory, prediction using the best linear unbiased predictors (BLUPs) is at the heart of the geostatistical literature. From a methodological point of view, we explore the limits of the extension of BLUP formulas in the context of SAR models for out-of-sample prediction simultaneously at several sites. We propose a more tractable ‘almost best’ alternative and clarify the relationship between the BLUP and a proper expectation–maximization (EM) algorithm predictor. From an empirical perspective, we present data-based simulations to compare the efficiency of classical formulas with the best and almost best predictions.

Suggested Citation

  • Michel Goulard & Thibault Laurent & Christine Thomas-Agnan, 2017. "About predictions in spatial autoregressive models: optimal and almost optimal strategies," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(2-3), pages 304-325, July.
  • Handle: RePEc:taf:specan:v:12:y:2017:i:2-3:p:304-325
    DOI: 10.1080/17421772.2017.1300679
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17421772.2017.1300679
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17421772.2017.1300679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roger Bivand, 2002. "Spatial econometrics functions in R: Classes and methods," Journal of Geographical Systems, Springer, vol. 4(4), pages 405-421, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Kopczewska, 2022. "Spatial machine learning: new opportunities for regional science," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(3), pages 713-755, June.
    2. Suesse, Thomas, 2018. "Marginal maximum likelihood estimation of SAR models with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 98-110.
    3. Paula Margaretic & Christine Thomas-Agnan & Romain Doucet, 2017. "Spatial dependence in (origin-destination) air passenger flows," Papers in Regional Science, Wiley Blackwell, vol. 96(2), pages 357-380, June.
    4. Thomas-Agnan, Christine & Margaretic, Paula & Laurent, Thibault, 2022. "Generalizing impact computations for the autoregressive spatial interaction model," TSE Working Papers 22-1357, Toulouse School of Economics (TSE), revised Feb 2023.
    5. Paul-Christian Bürkner & Jonah Gabry & Aki Vehtari, 2021. "Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models," Computational Statistics, Springer, vol. 36(2), pages 1243-1261, June.
    6. Simon K. C. Cheung & Tommy K. Y. Cheung, 2022. "Mixed membership nearest neighbor model with feature difference," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1578-1594, December.
    7. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    8. Dargel, Lukas, 2021. "Revisiting Estimation Methods for Spatial Econometric Interaction Models," TSE Working Papers 21-1192, Toulouse School of Economics (TSE).
    9. Laurent, Thibault & Margaretic, Paula & Thomas-Agnan, Christine, 2021. "Do neighboring countries matter when explaining bilateral remittances?," TSE Working Papers 21-1221, Toulouse School of Economics (TSE).
    10. Luo, Guowang & Wu, Mixia & Xu, Liwen, 2021. "IPW-based robust estimation of the SAR model with missing data," Statistics & Probability Letters, Elsevier, vol. 172(C).
    11. Lukas Dargel, 2021. "Revisiting estimation methods for spatial econometric interaction models," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-41, December.
    12. Hunneman, Auke & Bijmolt, Tammo H.A. & Elhorst, J. Paul, 2023. "Evaluating store location and department composition based on spatial heterogeneity in sales potential," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    13. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    14. Takafumi Kato, 2020. "Likelihood-based strategies for estimating unknown parameters and predicting missing data in the simultaneous autoregressive model," Journal of Geographical Systems, Springer, vol. 22(1), pages 143-176, January.
    15. Thomas Suesse, 2018. "Estimation of spatial autoregressive models with measurement error for large data sets," Computational Statistics, Springer, vol. 33(4), pages 1627-1648, December.
    16. Thomas-Agnan, Christine & Laurent, Thibault & Ruiz-Gazen, Anne & Nguyen, T.H.A & Chakir, Raja & Lungarska, Anna, 2020. "Spatial simultaneous autoregressive models for compositional data: Application to land use," TSE Working Papers 20-1098, Toulouse School of Economics (TSE).
    17. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
    18. Kerkman, Kasper & Martens, Karel & Meurs, Henk, 2018. "Predicting travel flows with spatially explicit aggregate models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 68-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger S. Bivand, 2021. "Progress in the R ecosystem for representing and handling spatial data," Journal of Geographical Systems, Springer, vol. 23(4), pages 515-546, October.
    2. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    3. Ruben Cordera & Pierluigi Coppola & Luigi dell’Olio & Ángel Ibeas, 2017. "Is accessibility relevant in trip generation? Modelling the interaction between trip generation and accessibility taking into account spatial effects," Transportation, Springer, vol. 44(6), pages 1577-1603, November.
    4. Michael Tiefelsdorf & Daniel A Griffith, 2007. "Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach," Environment and Planning A, , vol. 39(5), pages 1193-1221, May.
    5. Marcos Herrera Gomez, 2015. "Econometría espacial usando Stata. Breve guía aplicada para datos de corte transversal," Working Papers 13, Instituto de Estudios Laborales y del Desarrollo Económico (IELDE) - Universidad Nacional de Salta - Facultad de Ciencias Económicas, Jurídicas y Sociales.
    6. Elizabeth Mack & Yifan Zhang & Sergio Rey & Ross Maciejewski, 2014. "Spatio-temporal analysis of industrial composition with IVIID: an interactive visual analytics interface for industrial diversity," Journal of Geographical Systems, Springer, vol. 16(2), pages 183-209, April.
    7. repec:jss:jstsof:35:i01 is not listed on IDEAS
    8. Roger Bivand, 2008. "Implementing Representations Of Space In Economic Geography," Journal of Regional Science, Wiley Blackwell, vol. 48(1), pages 1-27, February.
    9. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    10. Darwyyn Deyo & Kofi Ampaabeng & Conor Norris & Edward Timmons, 2022. "Public interest or policy diffusion: Analyzing the effects of massage therapist municipal licensing," Working Papers 22-02, Department of Economics, West Virginia University.
    11. Xiaoxi Wang & Yaojun Zhang & Danlin Yu & Xiwei Wu & Ding Li, 2022. "Changes in Demographic Factors’ Influence on Regional Productivity Growth: Empirical Evidence from China, 2000–2010," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    12. Jean-Sauveur Ay & Raja Chakir & Julie Le Gallo, 2014. "The effects of scale, space and time on the predictive accuracy of land use models," Working Papers 2014/02, INRA, Economie Publique.
    13. Anastasopoulos, Panagiotis Ch. & Florax, Raymond J.G.M. & Labi, Samuel & Karlaftis, Mathew G., 2010. "Contracting in highway maintenance and rehabilitation: Are spatial effects important?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(3), pages 136-146, March.
    14. Czerwiński Adam Michał, 2017. "Distance to Radiotherapy and Demand – Projection of the Effects of Establishing New Radiotherapy Facilities in Poland by 2025," Central European Economic Journal, Sciendo, vol. 4(51), pages 40-52, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:12:y:2017:i:2-3:p:304-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RSEA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.