IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/125334.html
   My bibliography  Save this paper

Revisiting Estimation Methods for Spatial Econometric Interaction Models

Author

Listed:
  • Dargel, Lukas

Abstract

Taking advantage of a generalization of the matrix formulation introduced by LeSage and Pace (2008), this article presents improvements in the computational performance and flexibility of three estimators of spatial econometric interaction models. By generalizing computational techniques for the evaluation of the likelihood function and also for the Hessian matrix the maximum likelihood estimator (MLE) achieves computation times that are not much longer than those of an ordinary least-squares (OLS) regression. The restructured likelihood also improves the performance of the Bayesian Markov chain Monte Carlo (MCMC) estimator considerably. Finally, the spatial two-stage least-squares (S2SLS) estimator presented in this article is the first one that exploits the efficiency gains of the matrix formulation. In addition to the computational improvements of the three estimation methods this article presents a new solution to the issue of defining the feasible parameter space that allows to verify the consistency of the spatial econometric interaction model with a minimal computational burden. All of these developments indicate that the spatial econometric alternative to the traditional gravity model has become an increasingly mature option and should eventually be considered a standard modeling approach for origin-destination flow problems.

Suggested Citation

  • Dargel, Lukas, 2021. "Revisiting Estimation Methods for Spatial Econometric Interaction Models," TSE Working Papers 21-1192, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:125334
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2021/wp_tse_1192.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kerkman, Kasper & Martens, Karel & Meurs, Henk, 2017. "A multilevel spatial interaction model of transit flows incorporating spatial and network autocorrelation," Journal of Transport Geography, Elsevier, vol. 60(C), pages 155-166.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    3. Michel Goulard & Thibault Laurent & Christine Thomas-Agnan, 2017. "About predictions in spatial autoregressive models: optimal and almost optimal strategies," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(2-3), pages 304-325, July.
    4. Manfred M. Fischer & James P. LeSage, 2020. "Network dependence in multi-indexed data on international trade flows," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-26, December.
    5. Smirnov, Oleg A. & Anselin, Luc E., 2009. "An O(N) parallel method of computing the Log-Jacobian of the variable transformation for models with spatial interaction on a lattice," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2980-2988, June.
    6. Roberto Patuelli & Giuseppe Arbia (ed.), 2016. "Spatial Econometric Interaction Modelling," Advances in Spatial Science, Springer, number 978-3-319-30196-9.
    7. A. Porojan, 2001. "Trade Flows and Spatial Effects: The Gravity Model Revisited," Open Economies Review, Springer, vol. 12(3), pages 265-280, July.
    8. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    9. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    10. L W Hepple, 1995. "Bayesian Techniques in Spatial and Network Econometrics: 2. Computational Methods and Algorithms," Environment and Planning A, , vol. 27(4), pages 615-644, April.
    11. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    12. Debarsy, Nicolas & LeSage, James, 2018. "Flexible dependence modeling using convex combinations of different types of connectivity structures," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 48-68.
    13. Kazuki Tamesue & Morito Tsutsumi, 2016. "Dealing with Intraregional Flows in Spatial Econometric Gravity Models," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 105-119, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dargel, Lukas & Thomas-Agnan, Christine, 2022. "A generalized framework for estimating spatial econometric interaction models," TSE Working Papers 22-1312, Toulouse School of Economics (TSE).
    2. Yu, Haijing & Shen, Shaowei & Han, Lei & Ouyang, Jian, 2024. "Spatiotemporal heterogeneities in the impact of the digital economy on carbon emission transfers in China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    3. Jeong, Hanbat & Lee, Lung-fei, 2024. "Maximum likelihood estimation of a spatial autoregressive model for origin–destination flow variables," Journal of Econometrics, Elsevier, vol. 242(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Dargel, 2021. "Revisiting estimation methods for spatial econometric interaction models," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-41, December.
    2. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    3. Simon K. C. Cheung & Tommy K. Y. Cheung, 2022. "Mixed membership nearest neighbor model with feature difference," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1578-1594, December.
    4. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
    5. Kerkman, Kasper & Martens, Karel & Meurs, Henk, 2018. "Predicting travel flows with spatially explicit aggregate models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 68-88.
    6. Nicolas DEBARSY & Cem ERTUR, 2016. "Interaction matrix selection in spatial econometrics with an application to growth theory," LEO Working Papers / DR LEO 2172, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    7. Debarsy, Nicolas & Ertur, Cem, 2019. "Interaction matrix selection in spatial autoregressive models with an application to growth theory," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 49-69.
    8. Lee, Lung-fei & Yu, Jihai, 2014. "Efficient GMM estimation of spatial dynamic panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 180(2), pages 174-197.
    9. James Paul LeSage & Manfred M. Fischer, 2020. "Cross-sectional dependence model specifications in a static trade panel data setting," Journal of Geographical Systems, Springer, vol. 22(1), pages 5-46, January.
    10. Rodolfo Metulini & Paolo Sgrignoli & Stefano Schiavo & Massimo Riccaboni, 2018. "The network of migrants and international trade," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 763-787, December.
    11. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    12. Doğan, Osman & Taşpınar, Süleyman, 2014. "Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach," Regional Science and Urban Economics, Elsevier, vol. 45(C), pages 1-21.
    13. Nikolas Kuschnig, 2022. "Bayesian spatial econometrics: a software architecture," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-25, December.
    14. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    15. Li, Kunpeng, 2017. "Fixed-effects dynamic spatial panel data models and impulse response analysis," Journal of Econometrics, Elsevier, vol. 198(1), pages 102-121.
    16. Debarsy, Nicolas & Jin, Fei & Lee, Lung-fei, 2015. "Large sample properties of the matrix exponential spatial specification with an application to FDI," Journal of Econometrics, Elsevier, vol. 188(1), pages 1-21.
    17. Zenou, Yves & Patacchini, Eleonora & Liu, Xiaodong, 2013. "Peer Effects: Social Multiplier or Social Norms?," CEPR Discussion Papers 9366, C.E.P.R. Discussion Papers.
    18. Harald Badinger & Peter Egger, 2013. "Estimation and testing of higher-order spatial autoregressive panel data error component models," Journal of Geographical Systems, Springer, vol. 15(4), pages 453-489, October.
    19. Bao, Yong, 2024. "Estimating spatial autoregressions under heteroskedasticity without searching for instruments," Regional Science and Urban Economics, Elsevier, vol. 106(C).

    More about this item

    Keywords

    Origin-destination flows; Cross-sectional dependence; Maximum likelihood; Two-stage least-squares; Bayesian Markov chain Monte Carlo;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:125334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.