IDEAS home Printed from https://ideas.repec.org/a/taf/ragrxx/v56y2017i1p67-81.html
   My bibliography  Save this article

Impact of drought tolerant maize adoption on maize productivity, sales and consumption in rural Zimbabwe

Author

Listed:
  • Clifton Makate
  • Rongchang Wang
  • Marshall Makate
  • Nelson Mango

Abstract

Increased frequency of droughts (especially mid-season dry spells), higher than normal temperatures and altered patterns of precipitation and intensity are some of the extreme weather events evident in southern Africa. These extreme weather events present a threat to livelihoods and sustainability of agricultural production in the region. However, several climate-smart agricultural technologies (including drought-tolerant maize) believed to offer adaptation to climate variability in maize-based farming systems have been widely adopted. Moreover, empirical work on these technologies is limited. This paper demonstrates how by adopting drought-tolerant maize, a climate-smart agricultural technology impacts on the quantities of maize produced, sold and consumed in Zimbabwe. Using primary data on smallholder farmers collected in 2011 in Zimbabwe’s four districts, we employed propensity score matching techniques to construct a suitable comparison group and calculate the average treatment effect on the treated sample. We find that, the adoption of drought-tolerant maize (DTM) in rural Zimbabwe significantly enhances overall maize productivity and consequently the quantities set aside for sale and personal household consumption. Our study therefore suggests that, systematic expansion of climate-smart agricultural technologies such as adoption of drought-tolerant maize can significantly improve maize yields, sales and consumption in rural Zimbabwe. Our empirical results, robust to sensitivity checks, strongly point to the overall importance of DTM adoption in Zimbabwe. The findings from this paper also have very important implications for overall efforts on the promotion of climate-smart agriculture technologies in Africa and other developing countries.

Suggested Citation

  • Clifton Makate & Rongchang Wang & Marshall Makate & Nelson Mango, 2017. "Impact of drought tolerant maize adoption on maize productivity, sales and consumption in rural Zimbabwe," Agrekon, Taylor & Francis Journals, vol. 56(1), pages 67-81, January.
  • Handle: RePEc:taf:ragrxx:v:56:y:2017:i:1:p:67-81
    DOI: 10.1080/03031853.2017.1283241
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03031853.2017.1283241
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03031853.2017.1283241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nhemachena, Charles & Hassan, Rashid M., 2007. "Micro-level analysis of farmers' adaptation to climate change in Southern Africa," IFPRI discussion papers 714, International Food Policy Research Institute (IFPRI).
    2. Siopongco, Joel D.L.C. & Wassmann, Reiner & Sander, B.O., 2013. "Alternate wetting and drying in Philippine rice production: feasibility study for a Clean Development Mechanism," IRRI Technical Bulletins 287646, International Rice Research Institute (IRRI).
    3. Runge, C. Ford & Senauer, Benjamin & Pardey, Philip G. & Rosegrant, Mark W., 2004. "Ending hunger in Africa prospects for the small farmer," Issue briefs 16, International Food Policy Research Institute (IFPRI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katengeza, Samson P. & Holden , Stein T. & Fisher , Monica, 2017. "Adoption of Soil Fertility Management Technologies in Malawi: Impact of Drought Exposure," CLTS Working Papers 11/17, Norwegian University of Life Sciences, Centre for Land Tenure Studies, revised 21 Oct 2019.
    2. Hongyun Zheng & Wanglin Ma & Gucheng Li, 2021. "Learning from neighboring farmers: Does spatial dependence affect adoption of drought‐tolerant wheat varieties in China?," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 69(4), pages 519-537, December.
    3. Martey, Edward & Etwire, Prince M. & Kuwornu, John K.M., 2020. "Economic impacts of smallholder farmers’ adoption of drought-tolerant maize varieties," Land Use Policy, Elsevier, vol. 94(C).
    4. Clifton Makate & Marshall Makate & Nelson Mango, 2019. "Wealth-related inequalities in adoption of drought-tolerant maize and conservation agriculture in Zimbabwe," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(4), pages 881-896, August.
    5. Yi Chen & Zhengbing Wang, 2023. "The Impact of Land Transfers on the Adoption of New Varieties: Evidence from Micro-Survey Data in Shaanxi Province, China," Land, MDPI, vol. 12(3), pages 1-23, March.
    6. Katengeza, Samson P. & Holden, Stein T. & Fisher, Monica, 2019. "Use of Integrated Soil Fertility Management Technologies in Malawi: Impact of Dry Spells Exposure," Ecological Economics, Elsevier, vol. 156(C), pages 134-152.
    7. Samson P. Katengeza & Stein T. Holden, 2021. "Productivity impact of drought tolerant maize varieties under rainfall stress in Malawi: A continuous treatment approach," Agricultural Economics, International Association of Agricultural Economists, vol. 52(1), pages 157-171, January.
    8. Makate, Clifton & Makate, Marshall, 2019. "Interceding role of institutional extension services on the livelihood impacts of drought tolerant maize technology adoption in Zimbabwe," Technology in Society, Elsevier, vol. 56(C), pages 126-133.
    9. Varshney, Deepak & Joshi, P.K. & Roy, Devesh & Kumar, Anjani, 2021. "Understanding the Adoption of Modern Cultivars in India: Adoption probability and use intensity," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(1), January.
    10. Gideon Danso-Abbeam & Lloyd J. S. Baiyegunhi & Mark D. Laing & Hussein Shimelis, 2021. "Food security impacts of smallholder farmers’ adoption of dual-purpose sweetpotato varieties in Rwanda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(3), pages 653-668, June.
    11. Makate, Clifton & Mango, Nelson & Makate, Marshall, 2019. "Socioeconomic status connected imbalances in arable land size holding and utilization in smallholder farming in Zimbabwe: Implications for a sustainable rural development," Land Use Policy, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thennakoon, Jayanthi & Findlay, Christopher & Huang, Jikun & Wang, Jinxia, 2020. "Management adaptation to flood in Guangdong Province in China: Do property rights Matter?," World Development, Elsevier, vol. 127(C).
    2. Perelli, Chiara & Cacchiarelli, Luca & Peveri, Valentina & Branca, Giacomo, 2024. "Gender equality and sustainable development: A cross-country study on women's contribution to the adoption of the climate-smart agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 219(C).
    3. Song, Chunxiao & Liu, Ruifeng & Oxley, Oxley & Ma, Hengyun, 2018. "The adoption and impact of engineering-type measures to address climate change: evidence from the major grain-producing areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
    4. Kim, Chung-Sil & Jung, Hye-Kyung & Lee, Sang-Ho & Park, Soo-Young & Takei, Atsuo, 2012. "An Analysis on Determinants of Farmers´ Adaptation to Climate Change in Korea," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 35(2), pages 1-20, July.
    5. Ndambiri, H. K. & Ritho, C. & Mbogoh, Stephen G. & Nyangweso, P.M. & Ng’ang’a, S. I. & Muiruri, E. J. & Kipsat, Mary J. & Kubowon, P. C. & Cherotwo, F. H. & Omboto, P. I., 2012. "Analysis of Farmers’ Perceptions of the Effects of Climate Change in Kenya: The Case of Kyuso District," 2012 Eighth AFMA Congress, November 25-29, 2012, Nairobi, Kenya 159405, African Farm Management Association (AFMA).
    6. Rie Muraoka & Tomoya Matsumoto & Songqing Jin & Keijiro Otsuka, 2016. "On the Possibility of a Maize Green Revolution in the Highlands of Kenya: An Assessment of Emerging Intensive Farming Systems," Natural Resource Management and Policy, in: Keijiro Otsuka & Donald F. Larson (ed.), In Pursuit of an African Green Revolution, edition 1, chapter 0, pages 145-164, Springer.
    7. Dilshad Ahmad & Mohammad Afzal & Abdur Rauf, 2021. "Farmers’ adaptation decisions to landslides and flash floods in the mountainous region of Khyber Pakhtunkhwa of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8573-8600, June.
    8. Sriphirom, Patikorn & Rossopa, Benjamas, 2023. "Assessment of greenhouse gas mitigation from rice cultivation using alternate wetting and drying and rice straw biochar in Thailand," Agricultural Water Management, Elsevier, vol. 290(C).
    9. Trinh, Thoai Quang & Rañola, Roberto F. & Camacho, Leni D. & Simelton, Elisabeth, 2018. "Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam," Land Use Policy, Elsevier, vol. 70(C), pages 224-231.
    10. Jane Kabubo-Mariara & Richard Mulwa, 2019. "Adaptation to climate change and climate variability and its implications for household food security in Kenya," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1289-1304, December.
    11. Cattaneo, Cristina & Massetti, Emanuele, 2015. "Migration and Climate Change in Rural Africa," Climate Change and Sustainable Development 202117, Fondazione Eni Enrico Mattei (FEEM).
    12. Alam, Khorshed, 2015. "Farmers’ adaptation to water scarcity in drought-prone environments: A case study of Rajshahi District, Bangladesh," Agricultural Water Management, Elsevier, vol. 148(C), pages 196-206.
    13. Jeetendra Prakash Aryal & Dil Bahadur Rahut & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri, 2020. "Climate change mitigation options among farmers in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3267-3289, April.
    14. Elisa Zampieri & Michele Pesenti & Fabio Francesco Nocito & Gian Attilio Sacchi & Giampiero Valè, 2023. "Rice Responses to Water Limiting Conditions: Improving Stress Management by Exploiting Genetics and Physiological Processes," Agriculture, MDPI, vol. 13(2), pages 1-23, February.
    15. Thomas B. Yaméogo & William M. Fonta & Tobias Wünscher, 2018. "Can Social Capital influence Smallholder Farmers’ Climate-Change Adaptation Decisions? Evidence from Three Semi-Arid Communities in Burkina Faso, West Africa," Social Sciences, MDPI, vol. 7(3), pages 1-20, February.
    16. Wekesa, Bright Masakha, 2017. "Effect Of Climate Smart Agricultural Practices On Food Security Of Small Scale Farmers In Teso North Sub-County, Kenya," Research Theses 276427, Collaborative Masters Program in Agricultural and Applied Economics.
    17. Zeenatul Islam & Mohammad Alauddin & Md. Abdur Rashid Sarker, 2017. "Farmers’ perception on climate change-driven rice production loss in drought-prone and groundwater-depleted areas of Bangladesh: An ordered probit analysis," Discussion Papers Series 579, School of Economics, University of Queensland, Australia.
    18. Gatto, Marcel & Balie, Jean & Hareau, Guy, 2021. "The Future of Sustainable Intensification of Rice-Potato Agri-Food Systems in Asia," SocArXiv 3ba5x, Center for Open Science.
    19. Alauddin, Mohammad & Sarker, Md Abdur Rashid, 2014. "Climate change and farm-level adaptation decisions and strategies in drought-prone and groundwater-depleted areas of Bangladesh: an empirical investigation," Ecological Economics, Elsevier, vol. 106(C), pages 204-213.
    20. Ranasinghe, Ranawalage Dona Arani Koshathaki & Korale-Gedara, Pradeepa Malkanthi & Weerasooriya, Senal Alexander, 2023. "Climate change adaptation and adaptive capacities of dairy farmers: Evidence from village tank cascade systems in Sri Lanka," Agricultural Systems, Elsevier, vol. 206(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ragrxx:v:56:y:2017:i:1:p:67-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/ragr20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.