IDEAS home Printed from https://ideas.repec.org/p/ajf/louvlf/2023006.html
   My bibliography  Save this paper

The distribution of sample mean-variance portfolio weights

Author

Listed:
  • Kan, Raymond

    (Rotman School of Management, University of Toronto)

  • Lassance, Nathan

    (Université catholique de Louvain, LIDAM/LFIN, Belgium)

  • Wang, Xiaolu

    (Ivy College of Business, Iowa State University)

Abstract

We present a simple stochastic representation for the joint distribution of sample estimates of three scalar parameters and two vectors of portfolio weights that characterize the minimum-variance frontier. This stochastic representation is useful for sampling observations efficiently, deriving moments in closed-form, and studying the distribution and performance of many portfolio strategies that are functions of these five variables. We also present the asymptotic joint distributions of these five variables for both the standard regime and the high-dimensional regime. Both asymptotic distributions are simpler than the finite-sample one, and the one for the high-dimensional regime, i.e., when the number of assets and the sample size go together to infinity at a constant rate, reveals the high-dimensional properties of the considered estimators. Our results extend upon [T. Bodnar, H. Dette, N. Parolya and E. Thorst ́en, Sampling distributions of optimal portfolio weights and characteristics in low and large dimensions, Random Matrices: Theory Appl. 11 (2022)].

Suggested Citation

  • Kan, Raymond & Lassance, Nathan & Wang, Xiaolu, 2023. "The distribution of sample mean-variance portfolio weights," LIDAM Discussion Papers LFIN 2023006, Université catholique de Louvain, Louvain Finance (LFIN).
  • Handle: RePEc:ajf:louvlf:2023006
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A281068/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    2. Raymond Kan & Xiaolu Wang & Guofu Zhou, 2022. "Optimal Portfolio Choice with Estimation Risk: No Risk-Free Asset Case," Management Science, INFORMS, vol. 68(3), pages 2047-2068, March.
    3. Raymond Kan & Daniel R. Smith, 2008. "The Distribution of the Sample Minimum-Variance Frontier," Management Science, INFORMS, vol. 54(7), pages 1364-1380, July.
    4. Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2022. "Optimal Shrinkage-Based Portfolio Selection in High Dimensions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 140-156, December.
    5. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    6. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    7. Mengmeng Ao & Li Yingying & Xinghua Zheng, 2019. "Approaching Mean-Variance Efficiency for Large Portfolios," The Review of Financial Studies, Society for Financial Studies, vol. 32(7), pages 2890-2919.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taras Bodnar & Nestor Parolya & Erik Thorsen, 2021. "Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio," Papers 2106.02131, arXiv.org, revised Nov 2021.
    2. Taras Bodnar & Solomiia Dmytriv & Yarema Okhrin & Nestor Parolya & Wolfgang Schmid, 2020. "Statistical inference for the EU portfolio in high dimensions," Papers 2005.04761, arXiv.org.
    3. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    4. Kircher, Felix & Rösch, Daniel, 2021. "A shrinkage approach for Sharpe ratio optimal portfolios with estimation risks," Journal of Banking & Finance, Elsevier, vol. 133(C).
    5. Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Finance Research Letters, Elsevier, vol. 54(C).
    6. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    7. Lassance, Nathan, 2021. "Maximizing the Out-of-Sample Sharpe Ratio," LIDAM Discussion Papers LFIN 2021013, Université catholique de Louvain, Louvain Finance (LFIN).
    8. Bodnar, Olha & Bodnar, Taras & Niklasson, Vilhelm, 2024. "Constructing Bayesian tangency portfolios under short-selling restrictions," Finance Research Letters, Elsevier, vol. 62(PA).
    9. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    10. Hiraki, Kazuhiro & Sun, Chuanping, 2022. "A toolkit for exploiting contemporaneous stock correlations," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 99-124.
    11. Kan, Raymond & Wang, Xiaolu & Zheng, Xinghua, 2024. "In-sample and out-of-sample Sharpe ratios of multi-factor asset pricing models," Journal of Financial Economics, Elsevier, vol. 155(C).
    12. Francisco Rubio & Xavier Mestre & Daniel P. Palomar, 2011. "Performance analysis and optimal selection of large mean-variance portfolios under estimation risk," Papers 1110.3460, arXiv.org.
    13. Wolfgang Karl Hardle & Yegor Klochkov & Alla Petukhina & Nikita Zhivotovskiy, 2022. "Robustifying Markowitz," Papers 2212.13996, arXiv.org.
    14. Drin, Svitlana & Mazur, Stepan & Muhinyuza, Stanislas, 2023. "A test on the location of tangency portfolio for small sample size and singular covariance matrix," Working Papers 2023:11, Örebro University, School of Business.
    15. David Bauder & Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2021. "Bayesian mean–variance analysis: optimal portfolio selection under parameter uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 221-242, February.
    16. Kourtis, Apostolos, 2014. "On the distribution and estimation of trading costs," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 104-117.
    17. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    18. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
    20. Farrukh Javed & Stepan Mazur & Erik Thorsén, 2024. "Tangency portfolio weights under a skew-normal model in small and large dimensions," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 75(7), pages 1395-1406, July.

    More about this item

    Keywords

    Portfolio choice ; estimation risk ; stochastic representation ; high-dimensional asymptotics ; minimum-variance frontier;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ajf:louvlf:2023006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Séverine De Visscher (email available below). General contact details of provider: https://edirc.repec.org/data/lfuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.