IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1046-1054.html
   My bibliography  Save this article

Comparing biomarkers as trial level general surrogates

Author

Listed:
  • Erin E. Gabriel
  • Michael J. Daniels
  • M. Elizabeth Halloran

Abstract

An intermediate response measure that accurately predicts efficacy in a new setting can reduce trial cost and time to product licensure. In this article, we define a trial level general surrogate, which is an intermediate response that can be used to accurately predict efficacy in a new setting. Methods for evaluating general surrogates have been developed previously. Many methods in the literature use trial level intermediate responses for prediction. However, all existing methods focus on surrogate evaluation and prediction in new settings, rather than comparison of candidate general surrogates, and few formalize the use of cross validation to quantify the expected prediction error. Our proposed method uses Bayesian non‐parametric modeling and cross‐validation to estimate the absolute prediction error for use in evaluating and comparing candidate trial level general surrogates. Simulations show that our method performs well across a variety of scenarios. We use our method to evaluate and to compare candidate trial level general surrogates in several multi‐national trials of a pentavalent rotavirus vaccine. We identify at least one immune measure that has potential value as a trial level general surrogate and use it to predict efficacy in a new trial where the clinical outcome was not measured.

Suggested Citation

  • Erin E. Gabriel & Michael J. Daniels & M. Elizabeth Halloran, 2016. "Comparing biomarkers as trial level general surrogates," Biometrics, The International Biometric Society, vol. 72(4), pages 1046-1054, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1046-1054
    DOI: 10.1111/biom.12513
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12513
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Crainiceanu, Ciprian M. & Ruppert, David & Wand, Matthew P., 2005. "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i14).
    2. Ariel Alonso & Wim Van der Elst & Geert Molenberghs & Marc Buyse & Tomasz Burzykowski, 2015. "On the relationship between the causal-inference and meta-analytic paradigms for the validation of surrogate endpoints," Biometrics, The International Biometric Society, vol. 71(1), pages 15-24, March.
    3. Tomasz Burzykowski & Geert Molenberghs & Marc Buyse & Helena Geys & Didier Renard, 2001. "Validation of surrogate end points in multiple randomized clinical trials with failure time end points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 405-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Rodrigues & Peter Diggle & Renato Assuncao, 2010. "Semiparametric approach to point source modelling in epidemiology and criminology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 533-542, May.
    2. Sarah Brown & Pulak Ghosh & Bhuvanesh Pareek & Karl Taylor, 2017. "Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data," Working Papers 2017011, The University of Sheffield, Department of Economics.
    3. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    4. Flórez, Alvaro J. & Molenberghs, Geert & Van der Elst, Wim & Alonso Abad, Ariel, 2022. "An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    5. Casimir Ledoux Sofeu & Virginie Rondeau, 2020. "How to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-25, January.
    6. Ariel Alonso & Helena Geys & Geert Molenberghs & Michael G. Kenward & Tony Vangeneugden, 2004. "Validation of Surrogate Markers in Multiple Randomized Clinical Trials with Repeated Measurements: Canonical Correlation Approach," Biometrics, The International Biometric Society, vol. 60(4), pages 845-853, December.
    7. Lindsay A. Renfro & Bradley P. Carlin & Daniel J. Sargent, 2012. "Bayesian Adaptive Trial Design for a Newly Validated Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(1), pages 258-267, March.
    8. Xiaoyun Li & Cong Chen & Wen Li, 2018. "Adaptive Biomarker Population Selection in Phase III Confirmatory Trials with Time-to-Event Endpoints," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 324-341, August.
    9. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    10. Lauren Hund & Jarvis T. Chen & Nancy Krieger & Brent A. Coull, 2012. "A Geostatistical Approach to Large-Scale Disease Mapping with Temporal Misalignment," Biometrics, The International Biometric Society, vol. 68(3), pages 849-858, September.
    11. Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
    12. Renfro, Lindsay A. & Shi, Qian & Xue, Yuan & Li, Junlong & Shang, Hongwei & Sargent, Daniel J., 2014. "Center-within-trial versus trial-level evaluation of surrogate endpoints," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 1-20.
    13. Debashis Ghosh, 2009. "On Assessing Surrogacy in a Single Trial Setting Using a Semicompeting Risks Paradigm," Biometrics, The International Biometric Society, vol. 65(2), pages 521-529, June.
    14. Bo-Hong Wu & Hirofumi Michimae & Takeshi Emura, 2020. "Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model," Computational Statistics, Springer, vol. 35(4), pages 1525-1552, December.
    15. Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
    16. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    17. Brent A Coull, 2011. "A Random Intercepts–Functional Slopes Model for Flexible Assessment of Susceptibility in Longitudinal Designs," Biometrics, The International Biometric Society, vol. 67(2), pages 486-494, June.
    18. Steffen Fieuws & Geert Verbeke, 2006. "Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 424-431, June.
    19. Stephen N. Freeman & Nicholas J. B. Isaac & Panagiotis Besbeas & Emily B. Dennis & Byron J. T. Morgan, 2021. "A Generic Method for Estimating and Smoothing Multispecies Biodiversity Indicators Using Intermittent Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 71-89, March.
    20. Maura Mezzetti & Daniele Borzelli & Andrea d’Avella, 2022. "A Bayesian approach to model individual differences and to partition individuals: case studies in growth and learning curves," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1245-1271, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1046-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.