IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/272.html
   My bibliography  Save this paper

The Exponential Model for the Spectrum of a Time Series: Extensions and Applications

Author

Listed:

Abstract

The exponential model for the spectrum of a time series and its fractional extensions are based on the Fourier series expansion of the logarithm of the spectral density. The coefficients of the expansion form the cepstrum of the time series. After deriving the cepstrum of important classes of time series processes, also featuring long memory, we discuss likelihood inferences based on the periodogram, for which the estimation of the cepstrum yields a generalized linear model for exponential data with logarithmic link, focusing on the issue of separating the contribution of the long memory component to the log-spectrum. We then propose two extensions. The first deals with replacing the logarithmic link with a more general Box-Cox link, which encompasses also the identity and the inverse links: this enables nesting alternative spectral estimation methods (autoregressive, exponential, etc.) under the same likelihood-based framework. Secondly, we propose a gradient boosting algorithm for the estimation of the log-spectrum and illustrate its potential for distilling the long memory component of the log-spectrum.

Suggested Citation

  • Tommaso Proietti & Alessandra Luati, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," CEIS Research Paper 272, Tor Vergata University, CEIS, revised 19 Apr 2013.
  • Handle: RePEc:rtv:ceisrp:272
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP272.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Murray A. Cameron & T. Rolf Turner, 1987. "Fitting Models to Spectra Using Regression Packages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(1), pages 47-57, March.
    2. Francesco Battaglia, 1983. "Inverse Autocovariances And A Measure Of Linear Determinism For A Stationary Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(2), pages 79-87, March.
    3. Alessandra Luati & Tommaso Proietti, 2010. "Hyper‐spherical and elliptical stochastic cycles," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 169-181, May.
    4. Proietti, Tommaso & Luati, Alessandra, 2015. "The generalised autocovariance function," Journal of Econometrics, Elsevier, vol. 186(1), pages 245-257.
    5. C. K. Carter & R. Kohn, 1997. "Semiparametric Bayesian Inference for Time Series with Mixed Spectra," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 255-268.
    6. Masaki Narukawa & Yasumasa Matsuda, 2011. "Broadband semi‐parametric estimation of long‐memory time series by fractional exponential models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(2), pages 175-193, March.
    7. Hurvich, Clifford M., 2002. "Multistep forecasting of long memory series using fractional exponential models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 167-179.
    8. Rosen, Ori & Stoffer, David S. & Wood, Sally, 2009. "Local Spectral Analysis via a Bayesian Mixture of Smoothing Splines," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 249-262.
    9. Alessandra Luati & Tommaso Proietti & Marco Reale, 2012. "The Variance Profile," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 607-621, June.
    10. Barndorff-Nielsen, O. & Schou, G., 1973. "On the parametrization of autoregressive models by partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 3(4), pages 408-419, December.
    11. Peter M Robinson & Carlos Velasco, 2000. "Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series - (Now published in Journal of the American Statistical Association, 95, (2000), pp.1229-1243.)," STICERD - Econometrics Paper Series 391, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
    13. Koenker, Roger & Yoon, Jungmo, 2009. "Parametric links for binary choice models: A Fisherian-Bayesian colloquy," Journal of Econometrics, Elsevier, vol. 152(2), pages 120-130, October.
    14. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    15. Ori Rosen & Sally Wood & David S. Stoffer, 2012. "AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1575-1589, December.
    16. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    17. Gilles Fay & Eric Moulines & Philippe Soulier, 2002. "Nonlinear functionals of the periodogram," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(5), pages 523-553, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niels Haldrup & Oskar Knapik & Tommaso Proietti, 2016. "A generalized exponential time series regression model for electricity prices," CREATES Research Papers 2016-08, Department of Economics and Business Economics, Aarhus University.
    2. Proietti, Tommaso & Luati, Alessandra, 2015. "The generalised autocovariance function," Journal of Econometrics, Elsevier, vol. 186(1), pages 245-257.
    3. Tommaso Proietti & Niels Haldrup & Oskar Knapik, 2017. "Spikes and memory in (Nord Pool) electricity price spot prices," CEIS Research Paper 422, Tor Vergata University, CEIS, revised 18 Dec 2017.
    4. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    5. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    6. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    7. de Truchis, Gilles, 2013. "Approximate Whittle analysis of fractional cointegration and the stock market synchronization issue," Economic Modelling, Elsevier, vol. 34(C), pages 98-105.
    8. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    9. Dominique Guegan & Zhiping Lu, 2009. "Wavelet Method for Locally Stationary Seasonal Long Memory Processes," Post-Print halshs-00375531, HAL.
    10. Barros, Carlos Pestana & Gil-Alana, Luis A. & Payne, James E., 2012. "Comovements among U.S. state housing prices: Evidence from fractional cointegration," Economic Modelling, Elsevier, vol. 29(3), pages 936-942.
    11. Tommaso Proietti & Alessandra Luati, 2015. "Generalised partial autocorrelations and the mutual information between past and future," CREATES Research Papers 2015-24, Department of Economics and Business Economics, Aarhus University.
    12. Kouamé, Euloge F. & Hili, Ouagnina, 2008. "Minimum distance estimation of k-factors GARMA processes," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3254-3261, December.
    13. Alessandra Luati & Francesca Papagni & Tommaso Proietti, 2021. "Efficient Nonparametric Estimation of Generalized Autocovariances," CEIS Research Paper 515, Tor Vergata University, CEIS, revised 14 Oct 2021.
    14. Tommaso Proietti & Alessandra Luati, 2013. "Generalised Linear Spectral Models," CEIS Research Paper 290, Tor Vergata University, CEIS, revised 03 Oct 2013.
    15. Giorgio Canarella & Luis Gil-Alana & Rangan Gupta & Stephen M Miller, 2021. "Persistence and cyclical dynamics of US and UK house prices: Evidence from over 150 years of data," Urban Studies, Urban Studies Journal Limited, vol. 58(1), pages 53-72, January.
    16. Li, Jia & Phillips, Peter C. B. & Shi, Shuping & Yu, Jun, 2022. "Weak Identification of Long Memory with Implications for Inference," Economics and Statistics Working Papers 8-2022, Singapore Management University, School of Economics.
    17. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    18. Robinson, Peter M. & Velasco, Carlos, 2015. "Efficient inference on fractionally integrated panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 185(2), pages 435-452.
    19. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    20. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.

    More about this item

    Keywords

    Frequency Domain Methods; Generalized linear models; Long Memory; Boosting.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.