IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i519p1147-1155.html
   My bibliography  Save this article

Estimation of Monotone Treatment Effects in Network Experiments

Author

Listed:
  • David Choi

Abstract

Randomized experiments on social networks pose statistical challenges, due to the possibility of interference between units. We propose new methods for finding confidence intervals on the attributable treatment effect in such settings. The methods do not require partial interference, but instead require an identifying assumption that is similar to requiring nonnegative treatment effects. Network or spatial information can be used to customize the test statistic; in principle, this can increase power without making assumptions on the data-generating process. Supplementary materials for this article are available online.

Suggested Citation

  • David Choi, 2017. "Estimation of Monotone Treatment Effects in Network Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1147-1155, July.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1147-1155
    DOI: 10.1080/01621459.2016.1194845
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1194845
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1194845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    2. Peter M. Aronow, 2012. "A General Method for Detecting Interference Between Units in Randomized Experiments," Sociological Methods & Research, , vol. 41(1), pages 3-16, February.
    3. Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
    4. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    5. Xi Luo & Dylan S. Small & Chiang-Shan R. Li & Paul R. Rosenbaum, 2012. "Inference With Interference Between Units in an fMRI Experiment of Motor Inhibition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 530-541, June.
    6. Sinan Aral & Dylan Walker, 2011. "Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks," Management Science, INFORMS, vol. 57(9), pages 1623-1639, February.
    7. Edward Miguel & Michael Kremer, 2004. "Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities," Econometrica, Econometric Society, vol. 72(1), pages 159-217, January.
    8. Nickerson, David W., 2008. "Is Voting Contagious? Evidence from Two Field Experiments," American Political Science Review, Cambridge University Press, vol. 102(1), pages 49-57, February.
    9. Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
    10. Robert M. Bond & Christopher J. Fariss & Jason J. Jones & Adam D. I. Kramer & Cameron Marlow & Jaime E. Settle & James H. Fowler, 2012. "A 61-million-person experiment in social influence and political mobilization," Nature, Nature, vol. 489(7415), pages 295-298, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clemens Possnig & Andreea Rotu{a}rescu & Kyungchul Song, 2022. "Estimating Dynamic Spillover Effects along Multiple Networks in a Linear Panel Model," Papers 2211.08995, arXiv.org.
    2. Michael P. Leung, 2021. "Rate-Optimal Cluster-Randomized Designs for Spatial Interference," Papers 2111.04219, arXiv.org, revised Sep 2022.
    3. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    4. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    5. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    6. Vivek F. Farias & Andrew A. Li & Tianyi Peng & Andrew Zheng, 2022. "Markovian Interference in Experiments," Papers 2206.02371, arXiv.org, revised Jun 2022.
    7. Fredrik Savje, 2021. "Causal inference with misspecified exposure mappings: separating definitions and assumptions," Papers 2103.06471, arXiv.org, revised Mar 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    2. Clarke, Damian, 2017. "Estimating Difference-in-Differences in the Presence of Spillovers," MPRA Paper 81604, University Library of Munich, Germany.
    3. Karlsson, Maria & Lundin, Mathias, 2016. "On statistical methods for labor market evaluation under interference between units," Working Paper Series 2016:24, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    4. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    5. Sarah Baird & Aislinn Bohren & Craig McIntosh & Berk Ozler, 2017. "Optimal Design of Experiments in the Presence of Interference*, Second Version," PIER Working Paper Archive 16-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 30 Nov 2017.
    6. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    7. Debopam Bhattacharya & Pascaline Dupas & Shin Kanaya, 2013. "Estimating the Impact of Means-tested Subsidies under Treatment Externalities with Application to Anti-Malarial Bednets," CREATES Research Papers 2013-06, Department of Economics and Business Economics, Aarhus University.
    8. DiTraglia, Francis J. & García-Jimeno, Camilo & O’Keeffe-O’Donovan, Rossa & Sánchez-Becerra, Alejandro, 2023. "Identifying causal effects in experiments with spillovers and non-compliance," Journal of Econometrics, Elsevier, vol. 235(2), pages 1589-1624.
    9. Francis J. DiTraglia & Camilo Garcia-Jimeno & Rossa O'Keeffe-O'Donovan & Alejandro Sanchez-Becerra, 2020. "Identifying Causal Effects in Experiments with Spillovers and Non-compliance," Papers 2011.07051, arXiv.org, revised Jan 2023.
    10. Kosuke Imai & Zhichao Jiang, 2020. "Identification and sensitivity analysis of contagion effects in randomized placebo‐controlled trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1637-1657, October.
    11. Mathias Lundin & Maria Karlsson, 2014. "Estimation of causal effects in observational studies with interference between units," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 417-433, August.
    12. Sarah Baird & Aislinn Bohren & Craig McIntosh & Berk Ozler, 2015. "Designing Experiments to Measure Spillover Effects, Second Version," PIER Working Paper Archive 15-021, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Jun 2015.
    13. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    14. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    15. Giovanni Cerulli, 2014. "ntreatreg: a Stata module for estimation of treatment effects in the presence of neighborhood interactions," United Kingdom Stata Users' Group Meetings 2014 15, Stata Users Group.
    16. Baylis, Kathy & Ham, Andres, 2015. "How important is spatial correlation in randomized controlled trials?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205586, Agricultural and Applied Economics Association.
    17. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    18. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
    19. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    20. Sourafel Girma & Yundan Gong & Holger Görg & Sandra Lancheros, 2016. "Estimating direct and indirect effects of foreign direct investment on firm productivity in the presence of interactions between firms," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT, chapter 12, pages 227-239, World Scientific Publishing Co. Pte. Ltd..

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1147-1155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.