IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i498p530-541.html
   My bibliography  Save this article

Inference With Interference Between Units in an fMRI Experiment of Motor Inhibition

Author

Listed:
  • Xi Luo
  • Dylan S. Small
  • Chiang-Shan R. Li
  • Paul R. Rosenbaum

Abstract

An experimental unit is an opportunity to randomly apply or withhold a treatment. There is interference between units if the application of the treatment to one unit may also affect other units. In cognitive neuroscience, a common form of experiment presents a sequence of stimuli or requests for cognitive activity at random to each experimental subject and measures biological aspects of brain activity that follow these requests. Each subject is then many experimental units, and interference between units within an experimental subject is, likely, in part because the stimuli follow one another quickly and in part because human subjects learn or become experienced or primed or bored as the experiment proceeds. We use a recent functional magnetic resonance imaging (fMRI) experiment concerned with the inhibition of motor activity to illustrate and further develop recently proposed methodology for inference in the presence of interference. A simulation evaluates the power of competing procedures.

Suggested Citation

  • Xi Luo & Dylan S. Small & Chiang-Shan R. Li & Paul R. Rosenbaum, 2012. "Inference With Interference Between Units in an fMRI Experiment of Motor Inhibition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 530-541, June.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:530-541
    DOI: 10.1080/01621459.2012.655954
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.655954
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.655954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgia Papadogeorgou & Kosuke Imai & Jason Lyall & Fan Li, 2022. "Causal inference with spatio‐temporal data: Estimating the effects of airstrikes on insurgent violence in Iraq," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1969-1999, November.
    2. David Choi, 2017. "Estimation of Monotone Treatment Effects in Network Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1147-1155, July.
    3. L. Liu & M. G. Hudgens & S. Becker-Dreps, 2016. "On inverse probability-weighted estimators in the presence of interference," Biometrika, Biometrika Trust, vol. 103(4), pages 829-842.
    4. Zhao, Yi & Luo, Xi, 2023. "Multilevel mediation analysis with structured unmeasured mediator-outcome confounding," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    5. Yenny Webb-Vargas & Shaojie Chen & Aaron Fisher & Amanda Mejia & Yuting Xu & Ciprian Crainiceanu & Brian Caffo & Martin A. Lindquist, 2017. "Big Data and Neuroimaging," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 543-558, December.
    6. Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
    7. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:530-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.