IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2220-2231.html
   My bibliography  Save this article

Generalized propensity score approach to causal inference with spatial interference

Author

Listed:
  • A. Giffin
  • B. J. Reich
  • S. Yang
  • A. G. Rappold

Abstract

Many spatial phenomena exhibit interference, where exposures at one location may affect the response at other locations. Because interference violates the stable unit treatment value assumption, standard methods for causal inference do not apply. We propose a new causal framework to recover direct and spill‐over effects in the presence of spatial interference, taking into account that exposures at nearby locations are more influential than exposures at locations further apart. Under the no unmeasured confounding assumption, we show that a generalized propensity score is sufficient to remove all measured confounding. To reduce dimensionality issues, we propose a Bayesian spline‐based regression model accounting for a sufficient set of variables for the generalized propensity score. A simulation study demonstrates the accuracy and coverage properties. We apply the method to estimate the causal effect of wildland fires on air pollution in the Western United States over 2005–2018.

Suggested Citation

  • A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2220-2231
    DOI: 10.1111/biom.13745
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13745
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    2. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    3. Corwin M. Zigler & Krista Watts & Robert W. Yeh & Yun Wang & Brent A. Coull & Francesca Dominici, 2013. "Model Feedback in Bayesian Propensity Score Estimation," Biometrics, The International Biometric Society, vol. 69(1), pages 263-273, March.
    4. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    5. Corwin Matthew Zigler, 2016. "The Central Role of Bayes’ Theorem for Joint Estimation of Causal Effects and Propensity Scores," The American Statistician, Taylor & Francis Journals, vol. 70(1), pages 47-54, February.
    6. Kluve, Jochen & Schneider, Hilmar & Uhlendorff, Arne & Zhao, Zhong, 2007. "Evaluating Continuous Training Programs Using the Generalized Propensity Score," IZA Discussion Papers 3255, Institute of Labor Economics (IZA).
    7. Carolina Perez-Heydrich & Michael G. Hudgens & M. Elizabeth Halloran & John D. Clemens & Mohammad Ali & Michael E. Emch, 2014. "Assessing effects of cholera vaccination in the presence of interference," Biometrics, The International Biometric Society, vol. 70(3), pages 731-741, September.
    8. McCandless Lawrence C & Douglas Ian J. & Evans Stephen J. & Smeeth Liam, 2010. "Cutting Feedback in Bayesian Regression Adjustment for the Propensity Score," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-24, March.
    9. Michela Bia & Carlos A. Flores & Alfonso Flores-Lagunes & Alessandra Mattei, 2014. "A Stata package for the application of semiparametric estimators of dose–response functions," Stata Journal, StataCorp LP, vol. 14(3), pages 580-604, September.
    10. Olli Saarela & David A. Stephens & Erica E. M. Moodie & Marina B. Klein, 2015. "Rejoinder “On Bayesian estimation of marginal structural models”," Biometrics, The International Biometric Society, vol. 71(2), pages 299-301, June.
    11. Olli Saarela & David A. Stephens & Erica E. M. Moodie & Marina B. Klein, 2015. "On Bayesian estimation of marginal structural models," Biometrics, The International Biometric Society, vol. 71(2), pages 279-288, June.
    12. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    13. O. Saarela & L. R. Belzile & D. A. Stephens, 2016. "A Bayesian view of doubly robust causal inference," Biometrika, Biometrika Trust, vol. 103(3), pages 667-681.
    14. Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
    15. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    16. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    17. Ngo, Long & Wand, Matthew P., 2004. "Smoothing with Mixed Model Software," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i01).
    18. Georgia Papadogeorgou & Fabrizia Mealli & Corwin M. Zigler, 2019. "Causal inference with interfering units for cluster and population level treatment allocation programs," Biometrics, The International Biometric Society, vol. 75(3), pages 778-787, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    2. Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2020. "Latent Causal Socioeconomic Health Index," Papers 2009.12217, arXiv.org, revised Oct 2023.
    3. Ida D'Attoma & Silvia Pacei, 2018. "Evaluating the Effects of Product Innovation on the Performance of European Firms by Using the Generalised Propensity Score," German Economic Review, Verein für Socialpolitik, vol. 19(1), pages 94-112, February.
    4. Carina Steckenleiter & Michael Lechner & Tim Pawlowski & Ute Schüttoff, 2023. "Do local expenditures on sports facilities affect sports participation?," Economic Inquiry, Western Economic Association International, vol. 61(4), pages 1103-1128, October.
    5. Steckenleiter, Carina & Lechner, Michael & Pawlowski, Tim & Schüttoff, Ute, 2019. "Do local public expenditures on sports facilities affect sports participation in Germany?," Economics Working Paper Series 1905, University of St. Gallen, School of Economics and Political Science.
    6. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    7. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    8. Ferrara, Antonella Rita & Dijkstra, Lewis & McCann, Philip & Nisticó, Rosanna, 2022. "The response of regional well-being to place-based policy interventions," Regional Science and Urban Economics, Elsevier, vol. 97(C).
    9. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    10. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    11. Hilal Atasoy & Rajiv D. Banker & Paul A. Pavlou, 2016. "On the Longitudinal Effects of IT Use on Firm-Level Employment," Information Systems Research, INFORMS, vol. 27(1), pages 6-26, March.
    12. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    13. Chung Choe & Alfonso Flores-Lagunes & Sang-Jun Lee, 2015. "Do dropouts with longer training exposure benefit from training programs? Korean evidence employing methods for continuous treatments," Empirical Economics, Springer, vol. 48(2), pages 849-881, March.
    14. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    15. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    16. repec:lic:licosd:29311 is not listed on IDEAS
    17. Emiliano Magrini & Pierluigi Montalbano & Silvia Nenci, 2013. "Are the EU trade preferences really effective? A Generalized Propensity Score evaluation of the Southern Mediterranean Countries' case in agriculture and fishery," Working Papers 2/13, Sapienza University of Rome, DISS.
    18. Jie Zhu & Blanca Gallego, 2021. "Continuous Treatment Recommendation with Deep Survival Dose Response Function," Papers 2108.10453, arXiv.org, revised Sep 2023.
    19. Guadalupe Serrano-Domingo & Francisco Requena-Silvente, 2013. "Examining the non-linear relationship between migration and trade," Working Papers 1310, Department of Applied Economics II, Universidad de Valencia.
    20. Sourafel Girma & Yundan Gong & Holger Görg & Sandra Lancheros, 2016. "Estimating direct and indirect effects of foreign direct investment on firm productivity in the presence of interactions between firms," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT, chapter 12, pages 227-239, World Scientific Publishing Co. Pte. Ltd..
    21. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2220-2231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.