IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i4p1637-1657.html
   My bibliography  Save this article

Identification and sensitivity analysis of contagion effects in randomized placebo‐controlled trials

Author

Listed:
  • Kosuke Imai
  • Zhichao Jiang

Abstract

In social science research, interference between units is the rule rather than the exception. Contagion represents one key causal mechanism of such spillover effects, where one's treatment affects the outcome of another individual indirectly by changing the treated unit's own outcome. Alternatively, the treatment of one individual can affect the outcome of another person through other mechanisms. We consider the identification and sensitivity analysis of contagion effects. We analyse a randomized placebo‐controlled trial of the get out the vote campaign, in which canvassers were sent to randomly selected households with two registered voters but encouraged only one voter within each household to turn out in an upcoming election. To address the problem of non‐compliance, the experiment includes a placebo arm, in which canvassers encourage voters to recycle. We show how to identify and estimate the average contagion and direct effects by decomposing the average spillover effect. Our analysis examines whether canvassing increases the turnout of a non‐contacted voter by altering the vote intention of a contacted voter or through other mechanisms. To address the potential violation of key identification assumptions, we propose non‐parametric and parametric sensitivity analyses. We find robust contagion effects among some households.

Suggested Citation

  • Kosuke Imai & Zhichao Jiang, 2020. "Identification and sensitivity analysis of contagion effects in randomized placebo‐controlled trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1637-1657, October.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1637-1657
    DOI: 10.1111/rssa.12528
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12528
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    2. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    3. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    4. Halloran M. Elizabeth & Hudgens Michael G., 2012. "Causal Inference for Vaccine Effects on Infectiousness," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-40, January.
    5. Susmita Datta & M. Elizabeth Halloran & Ira M. Longini Jr, 1999. "Efficiency of Estimating Vaccine Efficacy for Susceptibility and Infectiousness: Randomization by Individual Versus Household," Biometrics, The International Biometric Society, vol. 55(3), pages 792-798, September.
    6. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    7. Betsy Sinclair & Margaret McConnell & Donald P. Green, 2012. "Detecting Spillover Effects: Design and Analysis of Multilevel Experiments," American Journal of Political Science, John Wiley & Sons, vol. 56(4), pages 1055-1069, October.
    8. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    9. Rogowski, Jon C. & Sinclair, Betsy, 2012. "Estimating the Causal Effects of Social Interaction with Endogenous Networks," Political Analysis, Cambridge University Press, vol. 20(3), pages 316-328, July.
    10. Imai, Kosuke, 2008. "Sharp bounds on the causal effects in randomized experiments with "truncation-by-death"," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 144-149, February.
    11. Nickerson, David W., 2008. "Is Voting Contagious? Evidence from Two Field Experiments," American Political Science Review, Cambridge University Press, vol. 102(1), pages 49-57, February.
    12. Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
    13. Kosuke Imai & Teppei Yamamoto, 2010. "Causal Inference with Differential Measurement Error: Nonparametric Identification and Sensitivity Analysis," American Journal of Political Science, John Wiley & Sons, vol. 54(2), pages 543-560, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    2. Chiba, Yasutaka, 2012. "A note on bounds for the causal infectiousness effect in vaccine trials," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1422-1429.
    3. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    4. C. Tort`u & I. Crimaldi & F. Mealli & L. Forastiere, 2020. "Modelling Network Interference with Multi-valued Treatments: the Causal Effect of Immigration Policy on Crime Rates," Papers 2003.10525, arXiv.org, revised Jun 2020.
    5. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    6. Giovanni Cerulli, 2014. "ntreatreg: a Stata module for estimation of treatment effects in the presence of neighborhood interactions," United Kingdom Stata Users' Group Meetings 2014 15, Stata Users Group.
    7. Sourafel Girma & Yundan Gong & Holger Görg & Sandra Lancheros, 2016. "Estimating direct and indirect effects of foreign direct investment on firm productivity in the presence of interactions between firms," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT, chapter 12, pages 227-239, World Scientific Publishing Co. Pte. Ltd..
    8. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    9. Shaina J. Alexandria & Michael G. Hudgens & Allison E. Aiello, 2023. "Assessing intervention effects in a randomized trial within a social network," Biometrics, The International Biometric Society, vol. 79(2), pages 1409-1419, June.
    10. Vazquez-Bare, Gonzalo, 2023. "Identification and estimation of spillover effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 237(1).
    11. David Choi, 2017. "Estimation of Monotone Treatment Effects in Network Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1147-1155, July.
    12. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    13. Elizabeth L. Ogburn & Ilya Shpitser & Youjin Lee, 2020. "Causal inference, social networks and chain graphs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1659-1676, October.
    14. Giovanni Cerulli, 2014. "Identification and Estimation of Treatment Effects in the Presence of Neighbourhood Interactions," CERIS Working Paper 201404, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    15. Clarke, Damian, 2017. "Estimating Difference-in-Differences in the Presence of Spillovers," MPRA Paper 81604, University Library of Munich, Germany.
    16. Tadao Hoshino & Takahide Yanagi, 2021. "Causal Inference with Noncompliance and Unknown Interference," Papers 2108.07455, arXiv.org, revised Oct 2023.
    17. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    18. Rigdon, Joseph & Hudgens, Michael G., 2015. "Exact confidence intervals in the presence of interference," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 130-135.
    19. Giovanni Cerulli & Roberto Gabriele & Enrico Tundis, 2014. "Evaluating locally-based policies in the presence of neighbourhood effects: The case of touristic accommodation in the Garda district of Trentino," ERSA conference papers ersa14p715, European Regional Science Association.
    20. Halloran M. Elizabeth & Hudgens Michael G., 2012. "Causal Inference for Vaccine Effects on Infectiousness," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-40, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1637-1657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.