IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v29y2023i1d10.1007_s10985-022-09567-3.html
   My bibliography  Save this article

Semiparametric regression analysis of doubly-censored data with applications to incubation period estimation

Author

Listed:
  • Kin Yau Wong

    (The Hong Kong Polytechnic University)

  • Qingning Zhou

    (The University of North Carolina at Charlotte)

  • Tao Hu

    (Capital Normal University)

Abstract

The incubation period is a key characteristic of an infectious disease. In the outbreak of a novel infectious disease, accurate evaluation of the incubation period distribution is critical for designing effective prevention and control measures . Estimation of the incubation period distribution based on limited information from retrospective inspection of infected cases is highly challenging due to censoring and truncation. In this paper, we consider a semiparametric regression model for the incubation period and propose a sieve maximum likelihood approach for estimation based on the symptom onset time, travel history, and basic demographics of reported cases. The approach properly accounts for the pandemic growth and selection bias in data collection. We also develop an efficient computation method and establish the asymptotic properties of the proposed estimators. We demonstrate the feasibility and advantages of the proposed methods through extensive simulation studies and provide an application to a dataset on the outbreak of COVID-19.

Suggested Citation

  • Kin Yau Wong & Qingning Zhou & Tao Hu, 2023. "Semiparametric regression analysis of doubly-censored data with applications to incubation period estimation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 87-114, January.
  • Handle: RePEc:spr:lifeda:v:29:y:2023:i:1:d:10.1007_s10985-022-09567-3
    DOI: 10.1007/s10985-022-09567-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-022-09567-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-022-09567-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianguo Sun & Qiming Liao & Marcello Pagano, 1999. "Regression Analysis of Doubly Censored Failure Time Data with Applications to AIDS Studies," Biometrics, The International Biometric Society, vol. 55(3), pages 909-914, September.
    2. Qingning Zhou & Tao Hu & Jianguo Sun, 2017. "A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 664-672, April.
    3. Wenyu Sun & Ya-Xiang Yuan, 2006. "Optimization Theory and Methods," Springer Optimization and Its Applications, Springer, number 978-0-387-24976-6, June.
    4. Liuquan Sun & Yang-jin Kim & Jianguo Sun, 2004. "Regression Analysis of Doubly Censored Failure Time Data Using the Additive Hazards Model," Biometrics, The International Biometric Society, vol. 60(3), pages 637-643, September.
    5. Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
    6. Shuwei Li & Jianguo Sun & Tian Tian & Xia Cui, 2020. "Semiparametric regression analysis of doubly censored failure time data from cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 315-338, April.
    7. Wei Pan, 2001. "A Multiple Imputation Approach to Regression Analysis for Doubly Censored Data with Application to AIDS Studies," Biometrics, The International Biometric Society, vol. 57(4), pages 1245-1250, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuwei Li & Jianguo Sun & Tian Tian & Xia Cui, 2020. "Semiparametric regression analysis of doubly censored failure time data from cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 315-338, April.
    2. Peijie Wang & Xingwei Tong & Jianguo Sun, 2018. "A semiparametric regression cure model for doubly censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 492-508, July.
    3. Yu, Binbing, 2010. "A Bayesian MCMC approach to survival analysis with doubly-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1921-1929, August.
    4. Yang-Jin Kim, 2006. "Regression Analysis of Doubly Censored Failure Time Data with Frailty," Biometrics, The International Biometric Society, vol. 62(2), pages 458-464, June.
    5. Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
    6. Liuquan Sun & Yang-jin Kim & Jianguo Sun, 2004. "Regression Analysis of Doubly Censored Failure Time Data Using the Additive Hazards Model," Biometrics, The International Biometric Society, vol. 60(3), pages 637-643, September.
    7. Jason Sutherland & Carl James Schwarz, 2005. "Multi-List Methods Using Incomplete Lists in Closed Populations," Biometrics, The International Biometric Society, vol. 61(1), pages 134-140, March.
    8. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    9. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    10. Saha, Tanay & Rakshit, Suman & Khare, Swanand R., 2023. "Linearly structured quadratic model updating using partial incomplete eigendata," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    11. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    12. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    13. Jörg Fliege & Andrey Tin & Alain Zemkoho, 2021. "Gauss–Newton-type methods for bilevel optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 793-824, April.
    14. Hai-Jun Wang & Qin Ni, 2010. "A Convex Approximation Method For Large Scale Linear Inequality Constrained Minimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 85-101.
    15. Chen, Liang, 2016. "A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 79-93.
    16. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    17. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    18. Marko Miladinović & Predrag Stanimirović & Sladjana Miljković, 2011. "Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 304-320, November.
    19. Wei Bian & Xiaojun Chen, 2017. "Optimality and Complexity for Constrained Optimization Problems with Nonconvex Regularization," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1063-1084, November.
    20. Yichen Lou & Peijie Wang & Jianguo Sun, 2023. "A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 628-653, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:29:y:2023:i:1:d:10.1007_s10985-022-09567-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.