IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i4p1223-1231.html
   My bibliography  Save this article

Pseudo and conditional score approach to joint analysis of current count and current status data

Author

Listed:
  • Chi‐Chung Wen
  • Yi‐Hau Chen

Abstract

We develop a joint analysis approach for recurrent and nonrecurrent event processes subject to case I interval censorship, which are also known in literature as current count and current status data, respectively. We use a shared frailty to link the recurrent and nonrecurrent event processes, while leaving the distribution of the frailty fully unspecified. Conditional on the frailty, the recurrent event is assumed to follow a nonhomogeneous Poisson process, and the mean function of the recurrent event and the survival function of the nonrecurrent event are assumed to follow some general form of semiparametric transformation models. Estimation of the models is based on the pseudo‐likelihood and the conditional score techniques. The resulting estimators for the regression parameters and the unspecified baseline functions are shown to be consistent with rates of square and cubic roots of the sample size, respectively. Asymptotic normality with closed‐form asymptotic variance is derived for the estimator of the regression parameters. We apply the proposed method to a fracture‐osteoporosis survey data to identify risk factors jointly for fracture and osteoporosis in elders, while accounting for association between the two events within a subject.

Suggested Citation

  • Chi‐Chung Wen & Yi‐Hau Chen, 2018. "Pseudo and conditional score approach to joint analysis of current count and current status data," Biometrics, The International Biometric Society, vol. 74(4), pages 1223-1231, December.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:4:p:1223-1231
    DOI: 10.1111/biom.12880
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12880
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen, Chi-Chung & Chen, Yi-Hau, 2016. "Joint analysis of current count and current status data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 153-164.
    2. Chi-Chung Wen & Yi-Hau Chen, 2012. "Conditional Score Approach to Errors-in-Variable Current Status Data Under the Proportional Odds Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 635-644, December.
    3. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    4. Qingning Zhou & Tao Hu & Jianguo Sun, 2017. "A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 664-672, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi-Chung Wen & Yi-Hau Chen, 2014. "Semiparametric analysis of incomplete current status outcome data under transformation models," Biometrics, The International Biometric Society, vol. 70(2), pages 335-345, June.
    2. Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
    3. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    4. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    5. Mingzhe Wu & Ming Zheng & Wen Yu & Ruofan Wu, 2018. "Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 570-596, September.
    6. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    7. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    8. Xin Chen & Jieli Ding & Liuquan Sun, 2018. "A semiparametric additive rate model for a modulated renewal process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 675-698, October.
    9. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
    10. Yichen Lou & Peijie Wang & Jianguo Sun, 2023. "A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 628-653, July.
    11. Yu-Jen Cheng & Mei-Cheng Wang, 2015. "Causal estimation using semiparametric transformation models under prevalent sampling," Biometrics, The International Biometric Society, vol. 71(2), pages 302-312, June.
    12. Xiaoyan Sun & Limin Peng & Yijian Huang & HuiChuan J. Lai, 2016. "Generalizing Quantile Regression for Counting Processes With Applications to Recurrent Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 145-156, March.
    13. Wang, Qihua & Tong, Xingwei & Sun, Liuquan, 2012. "Exploring the varying covariate effects in proportional odds models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 168-189.
    14. Qiu, Zhiping & Zhou, Yong, 2015. "Partially linear transformation models with varying coefficients for multivariate failure time data," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 144-166.
    15. Chun Yin Lee & Kin Yau Wong & Kwok Fai Lam & Dipankar Bandyopadhyay, 2023. "A semiparametric joint model for cluster size and subunit‐specific interval‐censored outcomes," Biometrics, The International Biometric Society, vol. 79(3), pages 2010-2022, September.
    16. Mengzhu Yu & Mingyue Du, 2022. "Regression Analysis of Multivariate Interval-Censored Failure Time Data under Transformation Model with Informative Censoring," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    17. Sangbum Choi & Xuelin Huang, 2014. "Maximum likelihood estimation of semiparametric mixture component models for competing risks data," Biometrics, The International Biometric Society, vol. 70(3), pages 588-598, September.
    18. Li, Shuwei & Hu, Tao & Zhao, Xingqiu & Sun, Jianguo, 2019. "A class of semiparametric transformation cure models for interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 153-165.
    19. Chia-Hui Huang & Yi-Hau Chen, 2017. "Regression analysis for bivariate gap time with missing first gap time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 83-101, January.
    20. Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:4:p:1223-1231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.