IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v74y2014icp52-63.html
   My bibliography  Save this article

Analysis of multivariate survival data with Clayton regression models under conditional and marginal formulations

Author

Listed:
  • He, W.

Abstract

The Clayton models, also called gamma frailty models, have been widely used for multivariate survival analysis. These models typically appear in either conditional or marginal formulations where covariates are incorporated through regression models. The two formulations provide us the flexibility to delineate various types of dependence of survival times on covariates, along with the availability of directly applying the likelihood method for inferences if the baseline hazard functions are parametrically or weakly parametrically specified. There are, however, fundamental issues pertaining to these models. It is not clear how the covariate effects in the two formulations are related to each other. What is the impact if misusing the conditional formulation when the true form should be marginal, or vice versa? These problems are investigated, and the relationship of the covariate coefficients between conditional and marginal regression models is established. Furthermore, empirical studies are carried out to assess how censoring proportion may affect estimation of covariate coefficients. A real example from the Busselton Health Study is analyzed for illustration.

Suggested Citation

  • He, W., 2014. "Analysis of multivariate survival data with Clayton regression models under conditional and marginal formulations," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 52-63.
  • Handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:52-63
    DOI: 10.1016/j.csda.2014.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000115
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenqing He & Jerald F. Lawless, 2003. "Flexible Maximum Likelihood Methods for Bivariate Proportional Hazards Models," Biometrics, The International Biometric Society, vol. 59(4), pages 837-848, December.
    2. Donglin Zeng & Qingxia Chen & Joseph G. Ibrahim, 2009. "Gamma frailty transformation models for multivariate survival times," Biometrika, Biometrika Trust, vol. 96(2), pages 277-291.
    3. Torben Martinussen & Thomas H. Scheike & David M. Zucker, 2011. "The Aalen additive gamma frailty hazards model," Biometrika, Biometrika Trust, vol. 98(4), pages 831-843.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongwen Zhang & Xiaoguang Wang & Yingwei Peng, 2022. "An additive hazards frailty model with semi-varying coefficients," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 116-138, January.
    2. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    3. Ying Hung & Li‐Hsiang Lin & C. F. Jeff Wu, 2022. "Varying coefficient frailty models with applications in single molecular experiments," Biometrics, The International Biometric Society, vol. 78(2), pages 474-486, June.
    4. Frank Eriksson & Thomas Scheike, 2015. "Additive gamma frailty models with applications to competing risks in related individuals," Biometrics, The International Biometric Society, vol. 71(3), pages 677-686, September.
    5. Yuxue Jin & Tze Leung Lai, 2017. "A new approach to regression analysis of censored competing-risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 605-625, October.
    6. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    7. Genest, Christian & Quessy, Jean-François & Rémillard, Bruno, 2006. "On the joint asymptotic behavior of two rank-based estimators of the association parameter in the gamma frailty model," Statistics & Probability Letters, Elsevier, vol. 76(1), pages 10-18, January.
    8. Ramesh Gupta, 2016. "Properties of additive frailty model in survival analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 1-17, January.
    9. Mário Castro & Ming-Hui Chen & Joseph G. Ibrahim & John P. Klein, 2014. "Bayesian Transformation Models for Multivariate Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 187-199, March.
    10. Xifen Huang & Jinfeng Xu & Yunpeng Zhou, 2022. "Profile and Non-Profile MM Modeling of Cluster Failure Time and Analysis of ADNI Data," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    11. Lajmi Lakhal-Chaieb & Richard J. Cook & Xihong Lin, 2010. "Inverse Probability of Censoring Weighted Estimates of Kendall's τ for Gap Time Analyses," Biometrics, The International Biometric Society, vol. 66(4), pages 1145-1152, December.
    12. Ruosha Li & Yu Cheng & Qingxia Chen & Jason Fine, 2017. "Quantile association for bivariate survival data," Biometrics, The International Biometric Society, vol. 73(2), pages 506-516, June.
    13. Qingning Zhou & Tao Hu & Jianguo Sun, 2017. "A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 664-672, April.
    14. Wenqing He & Grace Y. Yi, 2020. "Parametric and semiparametric estimation methods for survival data under a flexible class of models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 369-388, April.
    15. Frank Eriksson & Jianing Li & Thomas Scheike & Mei‐Jie Zhang, 2015. "The proportional odds cumulative incidence model for competing risks," Biometrics, The International Biometric Society, vol. 71(3), pages 687-695, September.
    16. Lianqiang Qu & Liuquan Sun & Xinyuan Song, 2018. "A Joint Modeling Approach for Longitudinal Data with Informative Observation Times and a Terminal Event," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 609-633, December.
    17. Xianghua Lu & Tian Lu & Chong (Alex) Wang & Ruofan Wu, 2021. "Can Social Notifications Help to Mitigate Payment Delinquency in Online Peer‐to‐Peer Lending?," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2564-2585, August.
    18. Liuquan Sun & Shuwei Li & Lianming Wang & Xinyuan Song & Xuemei Sui, 2022. "Simultaneous variable selection in regression analysis of multivariate interval‐censored data," Biometrics, The International Biometric Society, vol. 78(4), pages 1402-1413, December.
    19. Orth, Walter, 2013. "Multi-period credit default prediction with time-varying covariates," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 214-222.
    20. Tao Sun & Yi Liu & Richard J. Cook & Wei Chen & Ying Ding, 2019. "Copula-based score test for bivariate time-to-event data, with application to a genetic study of AMD progression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 546-568, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:52-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.