IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i509p45-55.html
   My bibliography  Save this article

A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies With Nonignorable Missingness With Application to an Acute Schizophrenia Clinical Trial

Author

Listed:
  • Antonio R. Linero
  • Michael J. Daniels

Abstract

We develop a Bayesian nonparametric model for a longitudinal response in the presence of nonignorable missing data. Our general approach is to first specify a working model that flexibly models the missingness and full outcome processes jointly. We specify a Dirichlet process mixture of missing at random (MAR) models as a prior on the joint distribution of the working model. This aspect of the model governs the fit of the observed data by modeling the observed data distribution as the marginalization over the missing data in the working model. We then separately specify the conditional distribution of the missing data given the observed data and dropout. This approach allows us to identify the distribution of the missing data using identifying restrictions as a starting point. We propose a framework for introducing sensitivity parameters, allowing us to vary the untestable assumptions about the missing data mechanism smoothly. Informative priors on the space of missing data assumptions can be specified to combine inferences under many different assumptions into a final inference and accurately characterize uncertainty. These methods are motivated by, and applied to, data from a clinical trial assessing the efficacy of a new treatment for acute schizophrenia. Supplementary materials for this article are available online.

Suggested Citation

  • Antonio R. Linero & Michael J. Daniels, 2015. "A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies With Nonignorable Missingness With Application to an Acute Schizophrenia Clinical Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 45-55, March.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:45-55
    DOI: 10.1080/01621459.2014.969424
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.969424
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.969424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy E. Hanson & Athanasios Kottas & Adam J. Branscum, 2008. "Modelling stochastic order in the analysis of receiver operating characteristic data: Bayesian non‐parametric approaches," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(2), pages 207-225, April.
    2. Wang, C. & Daniels, M. J. & Scharfstein, D. O. & Land, S., 2010. "A Bayesian Shrinkage Model for Incomplete Longitudinal Binary Data With Application to the Breast Cancer Prevention Trial," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1333-1346.
    3. Ofer Harel & Joseph L. Schafer, 2009. "Partial and latent ignorability in missing-data problems," Biometrika, Biometrika Trust, vol. 96(1), pages 37-50.
    4. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    5. M. G. Kenward, 2003. "Pattern-mixture models with proper time dependence," Biometrika, Biometrika Trust, vol. 90(1), pages 53-71, March.
    6. Hedibert Freitas Lopes & Peter Müller & Gary L. Rosner, 2003. "Bayesian Meta-analysis for Longitudinal Data Models Using Multivariate Mixture Priors," Biometrics, The International Biometric Society, vol. 59(1), pages 66-75, March.
    7. Michael J. Daniels, 2002. "Bayesian analysis of covariance matrices and dynamic models for longitudinal data," Biometrika, Biometrika Trust, vol. 89(3), pages 553-566, August.
    8. Chenguang Wang & Michael J. Daniels, 2011. "A Note on MAR, Identifying Restrictions, Model Comparison, and Sensitivity Analysis in Pattern Mixture Models with and without Covariates for Incomplete Data," Biometrics, The International Biometric Society, vol. 67(3), pages 810-818, September.
    9. Jolene Birmingham & Andrea Rotnitzky & Garrett M. Fitzmaurice, 2003. "Pattern–mixture and selection models for analysing longitudinal data with monotone missing patterns," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 275-297, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
    2. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    3. Daniel Scharfstein & Aidan McDermott & Iván Díaz & Marco Carone & Nicola Lunardon & Ibrahim Turkoz, 2018. "Global sensitivity analysis for repeated measures studies with informative drop†out: A semi†parametric approach," Biometrics, The International Biometric Society, vol. 74(1), pages 207-219, March.
    4. Andrea Gabrio & Michael J. Daniels & Gianluca Baio, 2020. "A Bayesian parametric approach to handle missing longitudinal outcome data in trial‐based health economic evaluations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 607-629, February.
    5. Antonio R. Linero, 2022. "Simulation‐based estimators of analytically intractable causal effects," Biometrics, The International Biometric Society, vol. 78(3), pages 1001-1017, September.
    6. Zhang, Yan-Qing & Tang, Nian-Sheng, 2017. "Bayesian local influence analysis of general estimating equations with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 184-200.
    7. Yu Cao & Nitai D. Mukhopadhyay, 2021. "Statistical Modeling of Longitudinal Data with Non-Ignorable Non-Monotone Missingness with Semiparametric Bayesian and Machine Learning Components," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 152-169, May.
    8. Michael J. Daniels & Minji Lee & Wei Feng, 2023. "Dirichlet process mixture models for the analysis of repeated attempt designs," Biometrics, The International Biometric Society, vol. 79(4), pages 3907-3915, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
    2. Michael J. Daniels & Arkendu S. Chatterjee & Chenguang Wang, 2012. "Bayesian Model Selection for Incomplete Data Using the Posterior Predictive Distribution," Biometrics, The International Biometric Society, vol. 68(4), pages 1055-1063, December.
    3. Niko A. Kaciroti & Trivellore E. Raghunathan & M. Anthony Schork & Noreen M. Clark, 2008. "A Bayesian model for longitudinal count data with non‐ignorable dropout," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(5), pages 521-534, December.
    4. Chenguang Wang & Michael J. Daniels, 2011. "A Note on MAR, Identifying Restrictions, Model Comparison, and Sensitivity Analysis in Pattern Mixture Models with and without Covariates for Incomplete Data," Biometrics, The International Biometric Society, vol. 67(3), pages 810-818, September.
    5. Wang, Y. & Daniels, M.J., 2013. "Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 130-140.
    6. Theodore Eisenberg & Thomas Eisenberg & Martin T. Wells & Min Zhang, 2015. "Addressing the Zeros Problem: Regression Models for Outcomes with a Large Proportion of Zeros, with an Application to Trial Outcomes," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 12(1), pages 161-186, March.
    7. Darima Fotheringham & Michael A. Wiles, 2023. "The effect of implementing chatbot customer service on stock returns: an event study analysis," Journal of the Academy of Marketing Science, Springer, vol. 51(4), pages 802-822, July.
    8. Song, Wei-Ling & Uzmanoglu, Cihan, 2016. "TARP announcement, bank health, and borrowers’ credit risk," Journal of Financial Stability, Elsevier, vol. 22(C), pages 22-32.
    9. Raymundo M. Campos-Vázquez, 2013. "Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 23-54, November.
    10. Jonathan Gruber & Aaron Yelowitz, 1999. "Public Health Insurance and Private Savings," Journal of Political Economy, University of Chicago Press, vol. 107(6), pages 1249-1274, December.
    11. Campbell, Randall C. & Nagel, Gregory L., 2016. "Private information and limitations of Heckman's estimator in banking and corporate finance research," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 186-195.
    12. Leye Li & Louise Yi Lu & Dongyue Wang, 2022. "External labour market competitions and stock price crash risk: evidence from exposures to competitor CEOs’ award‐winning events," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(S1), pages 1421-1460, April.
    13. Calcagno, R. & Renneboog, L.D.R., 2004. "Capital Structure and Managerial Compensation : The Effects of Renumeration Seniority," Discussion Paper 2004-120, Tilburg University, Center for Economic Research.
    14. Son K. Lam & Thomas E. DeCarlo & Ashish Sharma, 2019. "Salesperson ambidexterity in customer engagement: do customer base characteristics matter?," Journal of the Academy of Marketing Science, Springer, vol. 47(4), pages 659-680, July.
    15. McCausland, David & Pouliakas, Konstantinos & Theodossiou, Ioannis, 2005. "Some are Punished and Some are Rewarded: A Study of the Impact of Performance Pay on Job Satisfaction," MPRA Paper 14243, University Library of Munich, Germany.
    16. Gary F. Peters & Andrea M. Romi & Juan Manuel Sanchez, 2019. "The Influence of Corporate Sustainability Officers on Performance," Journal of Business Ethics, Springer, vol. 159(4), pages 1065-1087, November.
    17. Fossen, Frank M. & König, Johannes, 2015. "Public health insurance and entry into self-employment," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112934, Verein für Socialpolitik / German Economic Association.
    18. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    19. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    20. Brian H. Boyer & Taylor D. Nadauld & Keith P. Vorkink & Michael S. Weisbach, 2023. "Discount‐Rate Risk in Private Equity: Evidence from Secondary Market Transactions," Journal of Finance, American Finance Association, vol. 78(2), pages 835-885, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:45-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.