IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v57y2008i2p207-225.html
   My bibliography  Save this article

Modelling stochastic order in the analysis of receiver operating characteristic data: Bayesian non‐parametric approaches

Author

Listed:
  • Timothy E. Hanson
  • Athanasios Kottas
  • Adam J. Branscum

Abstract

Summary. The evaluation of the performance of a continuous diagnostic measure is a commonly encountered task in medical research. We develop Bayesian non‐parametric models that use Dirichlet process mixtures and mixtures of Polya trees for the analysis of continuous serologic data. The modelling approach differs from traditional approaches to the analysis of receiver operating characteristic curve data in that it incorporates a stochastic ordering constraint for the distributions of serologic values for the infected and non‐infected populations. Biologically such a constraint is virtually always feasible because serologic values from infected individuals tend to be higher than those for non‐infected individuals. The models proposed provide data‐driven inferences for the infected and non‐infected population distributions, and for the receiver operating characteristic curve and corresponding area under the curve. We illustrate and compare the predictive performance of the Dirichlet process mixture and mixture of Polya trees approaches by using serologic data for Johne's disease in dairy cattle.

Suggested Citation

  • Timothy E. Hanson & Athanasios Kottas & Adam J. Branscum, 2008. "Modelling stochastic order in the analysis of receiver operating characteristic data: Bayesian non‐parametric approaches," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(2), pages 207-225, April.
  • Handle: RePEc:bla:jorssc:v:57:y:2008:i:2:p:207-225
    DOI: 10.1111/j.1467-9876.2007.00609.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2007.00609.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2007.00609.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio R. Linero & Michael J. Daniels, 2015. "A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies With Nonignorable Missingness With Application to an Acute Schizophrenia Clinical Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 45-55, March.
    2. Beom Seuk Hwang & Zhen Chen, 2015. "An Integrated Bayesian Nonparametric Approach for Stochastic and Variability Orders in ROC Curve Estimation: An Application to Endometriosis Diagnosis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 923-934, September.
    3. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.
    4. Haiming Zhou & Timothy Hanson & Jiajia Zhang, 2017. "Generalized accelerated failure time spatial frailty model for arbitrarily censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 495-515, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:57:y:2008:i:2:p:207-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.