IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i1p207-219.html
   My bibliography  Save this article

Global sensitivity analysis for repeated measures studies with informative drop†out: A semi†parametric approach

Author

Listed:
  • Daniel Scharfstein
  • Aidan McDermott
  • Iván Díaz
  • Marco Carone
  • Nicola Lunardon
  • Ibrahim Turkoz

Abstract

In practice, both testable and untestable assumptions are generally required to draw inference about the mean outcome measured at the final scheduled visit in a repeated measures study with drop†out. Scharfstein et al. (2014) proposed a sensitivity analysis methodology to determine the robustness of conclusions within a class of untestable assumptions. In their approach, the untestable and testable assumptions were guaranteed to be compatible; their testable assumptions were based on a fully parametric model for the distribution of the observable data. While convenient, these parametric assumptions have proven especially restrictive in empirical research. Here, we relax their distributional assumptions and provide a more flexible, semi†parametric approach. We illustrate our proposal in the context of a randomized trial for evaluating a treatment of schizoaffective disorder.

Suggested Citation

  • Daniel Scharfstein & Aidan McDermott & Iván Díaz & Marco Carone & Nicola Lunardon & Ibrahim Turkoz, 2018. "Global sensitivity analysis for repeated measures studies with informative drop†out: A semi†parametric approach," Biometrics, The International Biometric Society, vol. 74(1), pages 207-219, March.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:207-219
    DOI: 10.1111/biom.12729
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12729
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
    2. Hall, Peter & Yao, Qiwei, 2005. "Approximating conditional distribution functions using dimension reduction," LSE Research Online Documents on Economics 16333, London School of Economics and Political Science, LSE Library.
    3. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    4. Antonio R. Linero & Michael J. Daniels, 2015. "A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies With Nonignorable Missingness With Application to an Acute Schizophrenia Clinical Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 45-55, March.
    5. Jolene Birmingham & Andrea Rotnitzky & Garrett M. Fitzmaurice, 2003. "Pattern–mixture and selection models for analysing longitudinal data with monotone missing patterns," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 275-297, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel O. Scharfstein & Jon Steingrimsson & Aidan McDermott & Chenguang Wang & Souvik Ray & Aimee Campbell & Edward Nunes & Abigail Matthews, 2022. "Global sensitivity analysis of randomized trials with nonmonotone missing binary outcomes: Application to studies of substance use disorders," Biometrics, The International Biometric Society, vol. 78(2), pages 649-659, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
    2. Chiang, Chin-Tsang & Huang, Ming-Yueh, 2012. "New estimation and inference procedures for a single-index conditional distribution model," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 271-285.
    3. Catalina Bolancé & Ricardo Cao & Montserrat Guillen, 2018. "“Flexible maximum conditional likelihood estimation for single-index models to predict accident severity with telematics data”," IREA Working Papers 201829, University of Barcelona, Research Institute of Applied Economics, revised Dec 2018.
    4. Carole Bernard & Junsen Tang, 2016. "Simplified Hedge For Path-Dependent Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-32, November.
    5. Matthias Hansmann & Benjamin M. Horn & Michael Kohler & Stefan Ulbrich, 2022. "Estimation of conditional distribution functions from data with additional errors applied to shape optimization," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 323-343, April.
    6. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    7. Sokbae Lee & Oliver Linton & Yoon-Jae Whang, 2009. "Testing for Stochastic Monotonicity," Econometrica, Econometric Society, vol. 77(2), pages 585-602, March.
    8. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    9. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    10. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    11. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    12. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "Estimation and Inference Procedures for Semiparametric Distribution Models with Varying Linear-Index," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 396-424, June.
    13. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    14. S Ariane Christie & Amanda S Conroy & Rachael A Callcut & Alan E Hubbard & Mitchell J Cohen, 2019. "Dynamic multi-outcome prediction after injury: Applying adaptive machine learning for precision medicine in trauma," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.
    15. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    16. Martins-Filho, Carlos & Ziegelmann, Flávio Augusto & Torrent, Hudson da Silva, 2013. "Local Exponential Frontier Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 33(2), November.
    17. Michael Rosenblum & Nicholas P. Jewell & Mark van der Laan & Stephen Shiboski & Ariane van der Straten & Nancy Padian, 2009. "Analysing direct effects in randomized trials with secondary interventions: an application to human immunodeficiency virus prevention trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 443-465, April.
    18. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    19. Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012. "Quantile treatment effects in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
    20. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    21. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:207-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.