IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v96y2009i1p37-50.html
   My bibliography  Save this article

Partial and latent ignorability in missing-data problems

Author

Listed:
  • Ofer Harel
  • Joseph L. Schafer

Abstract

When an assumption of missing at random is untenable, it becomes necessary to model missing-data indicators, which carry information about the parameters of the complete-data population. Within a given application, however, researchers may believe that some aspects of missingness are ignorable but others are not. We argue that there are two different ways to formalize the notion that only part of the missingness is ignorable. These approaches correspond to assumptions that we call partially missing at random and latently missing at random. We explain these concepts and apply them in a latent-class analysis of survey questions with item nonresponse. Copyright 2009, Oxford University Press.

Suggested Citation

  • Ofer Harel & Joseph L. Schafer, 2009. "Partial and latent ignorability in missing-data problems," Biometrika, Biometrika Trust, vol. 96(1), pages 37-50.
  • Handle: RePEc:oup:biomet:v:96:y:2009:i:1:p:37-50
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn069
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jouni Kuha & Myrsini Katsikatsou & Irini Moustaki, 2018. "Latent variable modelling with non‐ignorable item non‐response: multigroup response propensity models for cross‐national analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1169-1192, October.
    2. Vernon T. Farewell & Li Su & Christopher Jackson, 2019. "Partially hidden multi-state modelling of a prolonged disease state defined by a composite outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 696-711, October.
    3. Antonio R. Linero & Michael J. Daniels, 2015. "A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies With Nonignorable Missingness With Application to an Acute Schizophrenia Clinical Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 45-55, March.
    4. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2018. "Latent Ignorability and Item Selection for Nursing Home Case-Mix Evaluation," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 172-193, April.
    5. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2016. "Item selection by latent class-based methods: an application to nursing home evaluation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 245-262, June.
    6. Chenguang Wang & Michael J. Daniels, 2011. "A Note on MAR, Identifying Restrictions, Model Comparison, and Sensitivity Analysis in Pattern Mixture Models with and without Covariates for Incomplete Data," Biometrics, The International Biometric Society, vol. 67(3), pages 810-818, September.
    7. Ahfock, Daniel & McLachlan, Geoffrey J., 2023. "Semi-Supervised Learning of Classifiers from a Statistical Perspective: A Brief Review," Econometrics and Statistics, Elsevier, vol. 26(C), pages 124-138.
    8. A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
    9. Bartolucci, Francesco & Giorgio E., Montanari & Pandolfi, Silvia, 2012. "Item selection by an extended Latent Class model: An application to nursing homes evaluation," MPRA Paper 38757, University Library of Munich, Germany.
    10. Robitzsch, Alexander, 2020. "About Still Nonignorable Consequences of (Partially) Ignoring Missing Item Responses in Large-scale Assessment," OSF Preprints hmy45, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:96:y:2009:i:1:p:37-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.