IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v63y2007i2p351-362.html
   My bibliography  Save this article

Two-Stage Functional Mixed Models for Evaluating the Effect of Longitudinal Covariate Profiles on a Scalar Outcome

Author

Listed:
  • Daowen Zhang
  • Xihong Lin
  • MaryFran Sowers

Abstract

No abstract is available for this item.

Suggested Citation

  • Daowen Zhang & Xihong Lin & MaryFran Sowers, 2007. "Two-Stage Functional Mixed Models for Evaluating the Effect of Longitudinal Covariate Profiles on a Scalar Outcome," Biometrics, The International Biometric Society, vol. 63(2), pages 351-362, June.
  • Handle: RePEc:bla:biomet:v:63:y:2007:i:2:p:351-362
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2006.00713.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, October.
    2. Xihong Lin, 2004. "Equivalent kernels of smoothing splines in nonparametric regression for clustered/longitudinal data," Biometrika, Biometrika Trust, vol. 91(1), pages 177-193, March.
    3. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    4. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, October.
    5. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    6. Daowen Zhang & Xihong Lin & MaryFran Sowers, 2000. "Semiparametric Regression for Periodic Longitudinal Hormone Data from Multiple Menstrual Cycles," Biometrics, The International Biometric Society, vol. 56(1), pages 31-39, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingguo Tang & Peng Jin, 2019. "Estimation and variable selection for partial functional linear regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 475-501, December.
    2. Jianjun Zhou & Zhao Chen & Qingyan Peng, 2016. "Polynomial spline estimation for partial functional linear regression models," Computational Statistics, Springer, vol. 31(3), pages 1107-1129, September.
    3. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    4. Hanyu Yang & Runze Li & Robert A. Zucker & Anne Buu, 2016. "Two-stage model for time varying effects of zero-inflated count longitudinal covariates with applications in health behaviour research," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 431-444, April.
    5. Liebl, Dominik & Walders, Fabian, 2019. "Parameter regimes in partial functional panel regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 105-115.
    6. Shin, Hyejin & Lee, Myung Hee, 2012. "On prediction rate in partial functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 93-106, January.
    7. Qing-Yan Peng & Jian-Jun Zhou & Nian-Sheng Tang, 2016. "Varying coefficient partially functional linear regression models," Statistical Papers, Springer, vol. 57(3), pages 827-841, September.
    8. Dhiman Bhadra & Michael J. Daniels & Sungduk Kim & Malay Ghosh & Bhramar Mukherjee, 2012. "A Bayesian Semiparametric Approach for Incorporating Longitudinal Information on Exposure History for Inference in Case–Control Studies," Biometrics, The International Biometric Society, vol. 68(2), pages 361-370, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaroslaw Harezlak & Louise M. Ryan & Jay N. Giedd & Nicholas Lange, 2005. "Individual and Population Penalized Regression Splines for Accelerated Longitudinal Designs," Biometrics, The International Biometric Society, vol. 61(4), pages 1037-1048, December.
    2. Otsu, Taisuke, 2007. "Penalized empirical likelihood estimation of semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1923-1954, November.
    3. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    4. Gholamreza Hajargasht, 2009. "Nonparametric Panel Data Models, A Penalized Spline Approach," CEPA Working Papers Series WP052009, School of Economics, University of Queensland, Australia.
    5. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    6. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    7. Wei, Jiawei & Zhou, Lan, 2010. "Model selection using modified AIC and BIC in joint modeling of paired functional data," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1918-1924, December.
    8. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    9. Jianqing Fan & Jin-Ting Zhang & Wenyang Zhang, 2010. "Comments on: Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 37-42, May.
    10. Jonathan E. Gellar & Elizabeth Colantuoni & Dale M. Needham & Ciprian M. Crainiceanu, 2014. "Variable-Domain Functional Regression for Modeling ICU Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1425-1439, December.
    11. Veerabhadran Baladandayuthapani & Bani K. Mallick & Mee Young Hong & Joanne R. Lupton & Nancy D. Turner & Raymond J. Carroll, 2008. "Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis," Biometrics, The International Biometric Society, vol. 64(1), pages 64-73, March.
    12. Kalogridis, Ioannis, 2024. "Robust and adaptive functional logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    13. Al Kadiri, M. & Carroll, R.J. & Wand, M.P., 2010. "Marginal longitudinal semiparametric regression via penalized splines," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1242-1252, August.
    14. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    15. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    16. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    17. Proietti, Tommaso, 2010. "Trend Estimation," MPRA Paper 21607, University Library of Munich, Germany.
    18. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    19. Javier Parada Gómez Urquiza & Alejandro López-Feldman, 2013. "Poverty dynamics in rural Mexico: What does the future hold?," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 55-74, November.
    20. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:63:y:2007:i:2:p:351-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.