IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i9p1630-1643.html
   My bibliography  Save this article

Bayesian estimation for a mixture of simplex distributions with an unknown number of components: HDI analysis in Brazil

Author

Listed:
  • Rosineide Fernando da Paz
  • Jorge Luis Bazán
  • Luis Aparecido Milan

Abstract

Variables taking value in $ (0, 1) $ (0,1), such as rates or proportions, are frequently analyzed by researchers, for instance, political and social data, as well as the Human Development Index (HDI). However, sometimes this type of data cannot be modeled adequately using a unique distribution. In this case, we can use a mixture of distributions, which is a powerful and flexible probabilistic tool. This manuscript deals with a mixture of simplex distributions to model proportional data. A fully Bayesian approach is proposed for inference which includes a reversible-jump Markov Chain Monte Carlo procedure. The usefulness of the proposed approach is confirmed by using of the simulated mixture data from several different scenarios and by using the methodology to analyze municipal HDI data of cities (or towns) in the Northeast region and São Paulo state in Brazil. The analysis shows that among the cities in the Northeast, some appear to have a similar HDI to other cities in São Paulo state.

Suggested Citation

  • Rosineide Fernando da Paz & Jorge Luis Bazán & Luis Aparecido Milan, 2017. "Bayesian estimation for a mixture of simplex distributions with an unknown number of components: HDI analysis in Brazil," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1630-1643, July.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:9:p:1630-1643
    DOI: 10.1080/02664763.2016.1221903
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1221903
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1221903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stensholt, Eivind, 1999. "Beta distributions in a simplex and impartial anonymous cultures," Mathematical Social Sciences, Elsevier, vol. 37(1), pages 45-57, January.
    2. Peter Xue-Kun Song & Ming Tan, 2000. "Marginal Models for Longitudinal Continuous Proportional Data," Biometrics, The International Biometric Society, vol. 56(2), pages 496-502, June.
    3. Al-Awadhi, Fahimah & Hurn, Merrilee & Jennison, Christopher, 2004. "Improving the acceptance rate of reversible jump MCMC proposals," Statistics & Probability Letters, Elsevier, vol. 69(2), pages 189-198, August.
    4. Cifuentes, Manuel & Sembajwe, Grace & Tak, SangWoo & Gore, Rebecca & Kriebel, David & Punnett, Laura, 2008. "The association of major depressive episodes with income inequality and the human development index," Social Science & Medicine, Elsevier, vol. 67(4), pages 529-539, August.
    5. James B. McDonald & Michael Ransom, 2008. "The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation of Related Measures of Inequality," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 8, pages 147-166, Springer.
    6. Barndorff-Nielsen, O. E. & Jørgensen, B., 1991. "Some parametric models on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 106-116, October.
    7. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    8. S. Faria & F. Gon�alves, 2013. "Financial data modeling by Poisson mixture regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(10), pages 2150-2162, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josmar Mazucheli & Bruna Alves & Mustafa Ç. Korkmaz & Víctor Leiva, 2022. "Vasicek Quantile and Mean Regression Models for Bounded Data: New Formulation, Mathematical Derivations, and Numerical Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    2. Patrícia L. Espinheira & Alisson Oliveira Silva, 2020. "Residual and influence analysis to a general class of simplex regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 523-552, June.
    3. Hui Song & Yingwei Peng & Dongsheng Tu, 2017. "Jointly modeling longitudinal proportional data and survival times with an application to the quality of life data in a breast cancer trial," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 183-206, April.
    4. Zhenguo Qiu & Peter X.‐K. Song & Ming Tan, 2008. "Simplex Mixed‐Effects Models for Longitudinal Proportional Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 577-596, December.
    5. Gagnon, Philippe & Bédard, Mylène & Desgagné, Alain, 2019. "Weak convergence and optimal tuning of the reversible jump algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 32-51.
    6. Ricardo Rasmussen Petterle & Wagner Hugo Bonat & Cassius Tadeu Scarpin, 2019. "Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 346-368, June.
    7. Wenting Liu & Huiqiong Li & Anmin Tang & Zixin Cui, 2023. "Bayesian Joint Modeling Analysis of Longitudinal Proportional and Survival Data," Mathematics, MDPI, vol. 11(16), pages 1-17, August.
    8. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    9. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    10. William Gehrlein, 2002. "Condorcet's paradox and the likelihood of its occurrence: different perspectives on balanced preferences ," Theory and Decision, Springer, vol. 52(2), pages 171-199, March.
    11. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    12. N. T. Longford & Pierpaolo D'Urso, 2011. "Mixture models with an improper component," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2511-2521, January.
    13. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    14. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    15. Chen, Langnan & Luo, Jiawen & Liu, Hao, 2013. "The determinants of liquidity with G-RJMCMC-VS model: Evidence from China," Economic Modelling, Elsevier, vol. 35(C), pages 192-198.
    16. David I. Hastie & Peter J. Green, 2012. "Model choice using reversible jump Markov chain Monte Carlo," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 309-338, August.
    17. Francisco Richter & Bart Haegeman & Rampal S. Etienne & Ernst C. Wit, 2020. "Introducing a general class of species diversification models for phylogenetic trees," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 261-274, August.
    18. Nalini Ravishanker & Dipak K. Dey, 2000. "Multivariate Survival Models with a Mixture of Positive Stable Frailties," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 293-308, September.
    19. Yasutomo Murasawa, 2020. "Measuring public inflation perceptions and expectations in the UK," Empirical Economics, Springer, vol. 59(1), pages 315-344, July.
    20. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:9:p:1630-1643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.