IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1389-d798622.html
   My bibliography  Save this article

Vasicek Quantile and Mean Regression Models for Bounded Data: New Formulation, Mathematical Derivations, and Numerical Applications

Author

Listed:
  • Josmar Mazucheli

    (Department of Statistics, Universidade Estadual de Maringá, Maringá 87020-900, Brazil)

  • Bruna Alves

    (Department of Statistics, Universidade Estadual de Maringá, Maringá 87020-900, Brazil)

  • Mustafa Ç. Korkmaz

    (Department of Measurement and Evaluation, Artvin Coruh University, Artvin 08100, Turkey)

  • Víctor Leiva

    (School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

Abstract

The Vasicek distribution is a two-parameter probability model with bounded support on the open unit interval. This distribution allows for different and flexible shapes and plays an important role in many statistical applications, especially for modeling default rates in the field of finance. Although its probability density function resembles some well-known distributions, such as the beta and Kumaraswamy models, the Vasicek distribution has not been considered to analyze data on the unit interval, especially when we have, in addition to a response variable, one or more covariates. In this paper, we propose to estimate quantiles or means, conditional on covariates, assuming that the response variable is Vasicek distributed. Through appropriate link functions, two Vasicek regression models for data on the unit interval are formulated: one considers a quantile parameterization and another one its original parameterization. Monte Carlo simulations are provided to assess the statistical properties of the maximum likelihood estimators, as well as the coverage probability. An R package developed by the authors, named vasicekreg, makes available the results of the present investigation. Applications with two real data sets are conducted for illustrative purposes: in one of them, the unit Vasicek quantile regression outperforms the models based on the Johnson-SB, Kumaraswamy, unit-logistic, and unit-Weibull distributions, whereas in the second one, the unit Vasicek mean regression outperforms the fits obtained by the beta and simplex distributions. Our investigation suggests that unit Vasicek quantile and mean regressions can be of practical usage as alternatives to some well-known models for analyzing data on the unit interval.

Suggested Citation

  • Josmar Mazucheli & Bruna Alves & Mustafa Ç. Korkmaz & Víctor Leiva, 2022. "Vasicek Quantile and Mean Regression Models for Bounded Data: New Formulation, Mathematical Derivations, and Numerical Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1389-:d:798622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1389/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    2. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    3. Peter Xue-Kun Song & Ming Tan, 2000. "Marginal Models for Longitudinal Continuous Proportional Data," Biometrics, The International Biometric Society, vol. 56(2), pages 496-502, June.
    4. Luis Sánchez & Víctor Leiva & Manuel Galea & Helton Saulo, 2021. "Birnbaum‐Saunders quantile regression and its diagnostics with application to economic data," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 53-73, January.
    5. Barndorff-Nielsen, O. E. & Jørgensen, B., 1991. "Some parametric models on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 106-116, October.
    6. J. Mazucheli & A. F. B. Menezes & L. B. Fernandes & R. P. de Oliveira & M. E. Ghitany, 2020. "The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 954-974, April.
    7. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    8. Luis Sánchez & Víctor Leiva & Helton Saulo & Carolina Marchant & José M. Sarabia, 2021. "A New Quantile Regression Model and Its Diagnostic Analytics for a Weibull Distributed Response with Applications," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    9. Yun Zhao & Andy Lee & Kelvin Yau & Geoffrey McLachlan, 2011. "Assessing the adequacy of Weibull survival models: a simulated envelope approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2089-2097.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillermo Martínez-Flórez & Rafael B. Azevedo-Farias & Roger Tovar-Falón, 2022. "New Class of Unit-Power-Skew-Normal Distribution and Its Associated Regression Model for Bounded Responses," Mathematics, MDPI, vol. 10(17), pages 1-24, August.
    2. Helton Saulo & Roberto Vila & Giovanna V. Borges & Marcelo Bourguignon & Víctor Leiva & Carolina Marchant, 2023. "Modeling Income Data via New Parametric Quantile Regressions: Formulation, Computational Statistics, and Application," Mathematics, MDPI, vol. 11(2), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    2. Francesca Condino & Filippo Domma, 2023. "Unit Distributions: A General Framework, Some Special Cases, and the Regression Unit-Dagum Models," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    3. Ricardo Rasmussen Petterle & Wagner Hugo Bonat & Cassius Tadeu Scarpin, 2019. "Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 346-368, June.
    4. Lucio Masserini & Matilde Bini & Monica Pratesi, 2017. "Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 693-708, March.
    5. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Muhammad H. Tahir & Aqib Ali & Muhammad Zubair & Sania Anam, 2020. "Some New Facts about the Unit-Rayleigh Distribution with Applications," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    6. Patrícia L. Espinheira & Alisson Oliveira Silva, 2020. "Residual and influence analysis to a general class of simplex regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 523-552, June.
    7. Artur J. Lemonte & Germán Moreno-Arenas, 2020. "On a heavy-tailed parametric quantile regression model for limited range response variables," Computational Statistics, Springer, vol. 35(1), pages 379-398, March.
    8. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
    9. Yayan Hernuryadin & Koji Kotani & Tatsuyoshi Saijo, 2020. "Time Preferences of Food Producers: Does “Cultivate and Grow” Matter?," Land Economics, University of Wisconsin Press, vol. 96(1), pages 132-148.
    10. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    11. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    12. Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
    13. Guillen, Montserrat & Bermúdez, Lluís & Pitarque, Albert, 2021. "Joint generalized quantile and conditional tail expectation regression for insurance risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 1-8.
    14. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    15. Christian E. Galarza & Panpan Zhang & Víctor H. Lachos, 2021. "Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 325-349, November.
    16. Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
    17. Jay Verkuilen & Michael Smithson, 2012. "Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 82-113, February.
    18. Helton Saulo & Alan Dasilva & Víctor Leiva & Luis Sánchez & Hanns de la Fuente‐Mella, 2022. "Log‐symmetric quantile regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 124-163, May.
    19. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    20. Diego Ramos Canterle & Fábio Mariano Bayer, 2019. "Variable dispersion beta regressions with parametric link functions," Statistical Papers, Springer, vol. 60(5), pages 1541-1567, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1389-:d:798622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.