IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i2p397-414.html
   My bibliography  Save this article

Different estimation methods for the parameters of the extended Burr XII distribution

Author

Listed:
  • Ilhan Usta

Abstract

The extended three-parameter Burr XII (EBXII) distribution has recently attracted considerable attention for modeling data from various scientific fields since it yields a wide range of skewness and kurtosis values. However, it is well known that the parameter estimates have significant effects on the success of a distribution in real-life applications. In this study, modified moment estimators (MMEs) and modified probability-weighted moments estimators (MPWMEs) are used to estimate the parameters of the EBXII distribution. These two considered estimators are also compared with the commonly used maximum-likelihood, percentiles, least-squares and weighted least-squares estimators in terms of bias and efficiency via an extensive numerical simulation. The MMEs and MPWMEs are observed to perform well in varying sample cases, and the simulation results are supported with application through a real-life data set.

Suggested Citation

  • Ilhan Usta, 2013. "Different estimation methods for the parameters of the extended Burr XII distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 397-414, February.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:2:p:397-414
    DOI: 10.1080/02664763.2012.743974
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.743974
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.743974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. Ghitany & S. Al-Awadhi, 2002. "Maximum likelihood estimation of Burr XII distribution parameters under random censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(7), pages 955-965.
    2. Kundu, Debasis & Raqab, Mohammad Z., 2005. "Generalized Rayleigh distribution: different methods of estimations," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 187-200, April.
    3. Fu-Kwun Wang & Yung-Fu Cheng, 2010. "Robust regression for estimating the Burr XII parameters with outliers," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 807-819.
    4. Shao, Quanxi & Chen, Yongqin D. & Zhang, Lu, 2008. "An extension of three-parameter Burr III distribution for low-flow frequency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1304-1314, January.
    5. Shao, Quanxi, 2004. "Notes on maximum likelihood estimation for the three-parameter Burr XII distribution," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 675-687, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahzad Hussain & Sajjad Haider Bhatti & Tanvir Ahmad & Muhammad Ahmed Shehzad, 2021. "Parameter estimation of the Pareto distribution using least squares approaches blended with different rank methods and its applications in modeling natural catastrophes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1693-1708, June.
    2. Klein, Ingo, 2017. "(Generalized) maximum cumulative direct, paired, and residual Φ entropy principle," FAU Discussion Papers in Economics 25/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    4. Hassan M. Okasha & Abdulkareem M. Basheer & A. H. El-Baz, 2021. "Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations," Annals of Data Science, Springer, vol. 8(4), pages 769-784, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    2. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    3. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    4. Neha Goel & Hare Krishna, 2022. "Different methods of estimation in two parameter Geometric distribution with randomly censored data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1652-1665, August.
    5. Hassan M. Okasha & Abdulkareem M. Basheer & A. H. El-Baz, 2021. "Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations," Annals of Data Science, Springer, vol. 8(4), pages 769-784, December.
    6. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    7. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    8. Shao, Quanxi & Chen, Yongqin D. & Zhang, Lu, 2008. "An extension of three-parameter Burr III distribution for low-flow frequency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1304-1314, January.
    9. Mehmet Niyazi Çankaya & Abdullah Yalçınkaya & Ömer Altındaǧ & Olcay Arslan, 2019. "On the robustness of an epsilon skew extension for Burr III distribution on the real line," Computational Statistics, Springer, vol. 34(3), pages 1247-1273, September.
    10. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Hare Krishna & Rajni Goel, 2024. "Inferences Based on Correlated Randomly Censored Gumbel’s Type-I Bivariate Exponential Distribution," Annals of Data Science, Springer, vol. 11(4), pages 1185-1207, August.
    12. Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
    13. R. Arabi Belaghi & M. Arashi & S. Tabatabaey, 2014. "Improved confidence intervals for the scale parameter of Burr XII model based on record values," Computational Statistics, Springer, vol. 29(5), pages 1153-1173, October.
    14. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    15. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    16. Edwin Ortega & Gauss Cordeiro & Michael Kattan, 2013. "The log-beta Weibull regression model with application to predict recurrence of prostate cancer," Statistical Papers, Springer, vol. 54(1), pages 113-132, February.
    17. Singla, Neetu & Jain, Kanchan & Kumar Sharma, Suresh, 2012. "The Beta Generalized Weibull distribution: Properties and applications," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 5-15.
    18. Sanku Dey & Chunfang Zhang & A. Asgharzadeh & M. Ghorbannezhad, 2017. "Comparisons of Methods of Estimation for the NH Distribution," Annals of Data Science, Springer, vol. 4(4), pages 441-455, December.
    19. Zang, Zhaoqi & Xu, Xiangdong & Yang, Chao & Chen, Anthony, 2018. "A closed-form estimation of the travel time percentile function for characterizing travel time reliability," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 228-247.
    20. Paranaíba, Patrícia F. & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R., 2011. "The beta Burr XII distribution with application to lifetime data," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1118-1136, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:2:p:397-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.