The beta generalized Rayleigh distribution with applications to lifetime data
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-011-0415-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
- Fathi Manesh, Sirous & Khaledi, Baha-Eldin, 2008. "On the likelihood ratio order for convolutions of independent generalized Rayleigh random variables," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3139-3144, December.
- Tzong-Ru Tsai & Shuo-Jye Wu, 2006. "Acceptance sampling based on truncated life tests for generalized Rayleigh distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(6), pages 595-600.
- Kundu, Debasis & Raqab, Mohammad Z., 2005. "Generalized Rayleigh distribution: different methods of estimations," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 187-200, April.
- Felipe Gusmão & Edwin Ortega & Gauss Cordeiro, 2011. "The generalized inverse Weibull distribution," Statistical Papers, Springer, vol. 52(3), pages 591-619, August.
- Pescim, Rodrigo R. & Demétrio, Clarice G.B. & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Urbano, Mariana R., 2010. "The beta generalized half-normal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 945-957, April.
- M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
- Koutrouvelis, Ioannis A. & Canavos, George C. & Meintanis, Simos G., 2005. "Estimation in the three-parameter inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1132-1147, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mavis Pararai & Broderick O. Oluyede & Gayan Warahena-Liyanage, 2016. "The Beta Lindley-Poisson Distribution with Applications," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 5(4), pages 1-1.
- Hanan Haj Ahmad & Dina A. Ramadan & Ehab M. Almetwally, 2024. "Tampered Random Variable Analysis in Step-Stress Testing: Modeling, Inference, and Applications," Mathematics, MDPI, vol. 12(8), pages 1-25, April.
- Hanan Haj Ahmad & Dina A. Ramadan & Ehab M. Almetwally, 2024. "Evaluating the Discrete Generalized Rayleigh Distribution: Statistical Inferences and Applications to Real Data Analysis," Mathematics, MDPI, vol. 12(2), pages 1-23, January.
- Karol I. Santoro & Diego I. Gallardo & Osvaldo Venegas & Isaac E. Cortés & Héctor W. Gómez, 2023. "A Heavy-Tailed Distribution Based on the Lomax–Rayleigh Distribution with Applications to Medical Data," Mathematics, MDPI, vol. 11(22), pages 1-15, November.
- Ingo Hoffmann & Christoph J. Börner, 2021. "The risk function of the goodness-of-fit tests for tail models," Statistical Papers, Springer, vol. 62(4), pages 1853-1869, August.
- Domma, Filippo & Condino, Francesca, 2014. "A new class of distribution functions for lifetime data," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 36-45.
- Jose K. K. & Sivadas Remya, 2015. "Negative Binomial Marshall–Olkin Rayleigh Distribution and Its Applications," Stochastics and Quality Control, De Gruyter, vol. 30(2), pages 89-98, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mavis Pararai & Broderick O. Oluyede & Gayan Warahena-Liyanage, 2016. "The Beta Lindley-Poisson Distribution with Applications," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 5(4), pages 1-1.
- Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
- Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
- Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
- Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
- Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Cordeiro, Gauss M. & Lemonte, Artur J., 2011. "The beta Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 973-982, August.
- Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
- Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
- Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
- Edwin Ortega & Gauss Cordeiro & Michael Kattan, 2013. "The log-beta Weibull regression model with application to predict recurrence of prostate cancer," Statistical Papers, Springer, vol. 54(1), pages 113-132, February.
- Singla, Neetu & Jain, Kanchan & Kumar Sharma, Suresh, 2012. "The Beta Generalized Weibull distribution: Properties and applications," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 5-15.
- Paranaíba, Patrícia F. & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R., 2011. "The beta Burr XII distribution with application to lifetime data," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1118-1136, February.
- Jese Maria Sarabia & Enrique Castillo, 2005. "About a class of max-stable families with applications to income distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 505-527.
- Ibrahim Elbatal & Francesca Condino & Filippo Domma, 2016. "Reflected Generalized Beta Inverse Weibull Distribution: definition and properties," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 316-340, November.
- Saralees Nadarajah & Gauss Cordeiro & Edwin Ortega, 2013. "The exponentiated Weibull distribution: a survey," Statistical Papers, Springer, vol. 54(3), pages 839-877, August.
- Mameli, Valentina, 2015. "The Kumaraswamy skew-normal distribution," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 75-81.
- Chen, D.G. & Lio, Y.L., 2010. "Parameter estimations for generalized exponential distribution under progressive type-I interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1581-1591, June.
- Pescim, Rodrigo R. & Demétrio, Clarice G.B. & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Urbano, Mariana R., 2010. "The beta generalized half-normal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 945-957, April.
- Devendra Kumar & Manoj Kumar, 2019. "A New Generalization of the Extended Exponential Distribution with an Application," Annals of Data Science, Springer, vol. 6(3), pages 441-462, September.
More about this item
Keywords
Beta generalized distribution; Generalized Rayleigh distribution; Information; Maximum likelihood estimation; Moment; Rayleigh;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:54:y:2013:i:1:p:133-161. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.