IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i2p1118-1136.html
   My bibliography  Save this article

The beta Burr XII distribution with application to lifetime data

Author

Listed:
  • Paranaíba, Patrícia F.
  • Ortega, Edwin M.M.
  • Cordeiro, Gauss M.
  • Pescim, Rodrigo R.

Abstract

For the first time, a five-parameter distribution, the so-called beta Burr XII distribution, is defined and investigated. The new distribution contains as special sub-models some well-known distributions discussed in the literature, such as the logistic, Weibull and Burr XII distributions, among several others. We derive its moment generating function. We obtain, as a special case, the moment generating function of the Burr XII distribution, which seems to be a new result. Moments, mean deviations, Bonferroni and Lorenz curves and reliability are provided. We derive two representations for the moments of the order statistics. The method of maximum likelihood and a Bayesian analysis are proposed for estimating the model parameters. The observed information matrix is obtained. For different parameter settings and sample sizes, various simulation studies are performed and compared in order to study the performance of the new distribution. An application to real data demonstrates that the new distribution can provide a better fit than other classical models. We hope that this generalization may attract wider applications in reliability, biology and lifetime data analysis.

Suggested Citation

  • Paranaíba, Patrícia F. & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R., 2011. "The beta Burr XII distribution with application to lifetime data," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1118-1136, February.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:1118-1136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00352-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    2. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    3. Pescim, Rodrigo R. & Demétrio, Clarice G.B. & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Urbano, Mariana R., 2010. "The beta generalized half-normal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 945-957, April.
    4. H. M. Barakat & Y. H. Abdelkader, 2004. "Computing the moments of order statistics from nonidentical random variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 13(1), pages 15-26, April.
    5. Silva, Giovana Oliveira & Ortega, Edwin M.M. & Cancho, Vicente G. & Barreto, Mauricio Lima, 2008. "Log-Burr XII regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3820-3842, March.
    6. Shao, Quanxi, 2004. "Notes on maximum likelihood estimation for the three-parameter Burr XII distribution," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 675-687, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nanami Taketomi & Kazuki Yamamoto & Christophe Chesneau & Takeshi Emura, 2022. "Parametric Distributions for Survival and Reliability Analyses, a Review and Historical Sketch," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    2. Lucas D. Ribeiro Reis & Gauss M. Cordeiro & Maria do Carmo S. Lima, 2022. "The Stacy-G Class: A New Family of Distributions with Regression Modeling and Applications to Survival Real Data," Stats, MDPI, vol. 5(1), pages 1-43, March.
    3. Hanieh Panahi, 2019. "Estimation for the parameters of the Burr Type XII distribution under doubly censored sample with application to microfluidics data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 510-518, August.
    4. Andres, Philipp, 2014. "Maximum likelihood estimates for positive valued dynamic score models; The DySco package," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 34-42.
    5. Phillip Oluwatobi Awodutire & Oluwafemi Samson Balogun & Akintayo Kehinde Olapade & Ethelbert Chinaka Nduka, 2021. "The modified beta transmuted family of distributions with applications using the exponential distribution," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-25, November.
    6. Nadarajah, Saralees & Rocha, Ricardo, 2016. "Newdistns: An R Package for New Families of Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i10).
    7. Chakraburty Subrata & Alizadeh Morad & Handique Laba & Altun Emrah & Hamedani G. G., 2021. "A new extension of Odd Half-Cauchy Family of Distributions: properties and applications with regression modeling," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 77-100, December.
    8. Mahmoudi, Eisa, 2011. "The beta generalized Pareto distribution with application to lifetime data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2414-2430.
    9. Liu, Junfeng & Wang, Yi, 2013. "On Crevecoeur’s bathtub-shaped failure rate model," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 645-660.
    10. Joyce, Paul & Abdo, Zaid, 2018. "Determining the distribution of fitness effects using a generalized Beta-Burr distribution," Theoretical Population Biology, Elsevier, vol. 122(C), pages 88-96.
    11. Renata Rojas Guerra & Fernando A. Peña-Ramírez & Gauss M. Cordeiro, 2023. "The Logistic Burr XII Distribution: Properties and Applications to Income Data," Stats, MDPI, vol. 6(4), pages 1-20, November.
    12. Douglas Moura Miranda & Samuel Vieira Conceição, 2017. "A practical method to calculate probabilities: illustrative example from the electronic industry business," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 882-896, April.
    13. Singh, Vijay P., 2018. "Systems of frequency distributions for water and environmental engineering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 50-74.
    14. Ibrahim Elbatal & Francesca Condino & Filippo Domma, 2016. "Reflected Generalized Beta Inverse Weibull Distribution: definition and properties," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 316-340, November.
    15. Subrata Chakraburty & Morad Alizadeh & Laba Handique & Emrah Altun & G. G. Hamedani, 2021. "A new extension of Odd Half-Cauchy Family of Distributions: properties and applications with regression modeling," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 77-100, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadi Saboori & Ghobad Barmalzan & Seyyed Masih Ayat, 2020. "Generalized Modified Inverse Weibull Distribution: Its Properties and Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 247-269, November.
    2. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    3. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    4. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    5. C. Satheesh Kumar & S. Dharmaja, 2014. "On some properties of Kies distribution," METRON, Springer;Sapienza Università di Roma, vol. 72(1), pages 97-122, April.
    6. Zhang, Tieling & Dwight, Richard, 2013. "Choosing an optimal model for failure data analysis by graphical approach," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 111-123.
    7. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    8. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    10. Pescim, Rodrigo R. & Demétrio, Clarice G.B. & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Urbano, Mariana R., 2010. "The beta generalized half-normal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 945-957, April.
    11. Cordeiro, Gauss M. & Lemonte, Artur J., 2011. "The [beta]-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1445-1461, March.
    12. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    13. Almalki, Saad J. & Yuan, Jingsong, 2013. "A new modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 164-170.
    14. Peng, Xiuyun & Yan, Zaizai, 2014. "Estimation and application for a new extended Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 34-42.
    15. Mavis Pararai & Broderick O. Oluyede & Gayan Warahena-Liyanage, 2016. "The Beta Lindley-Poisson Distribution with Applications," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 5(4), pages 1-1.
    16. He, Bo & Cui, Weimin & Du, Xiaofeng, 2016. "An additive modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 28-37.
    17. Singla, Neetu & Jain, Kanchan & Kumar Sharma, Suresh, 2012. "The Beta Generalized Weibull distribution: Properties and applications," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 5-15.
    18. Bebbington, Mark & Lai, Chin-Diew & Wellington, Morgan & Zitikis, RiÄ ardas, 2012. "The discrete additive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 37-44.
    19. Xu, Meng & Droguett, Enrique López & Lins, Isis Didier & das Chagas Moura, Márcio, 2017. "On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 93-105.
    20. Gauss Cordeiro & Artur Lemonte, 2013. "On the Marshall–Olkin extended Weibull distribution," Statistical Papers, Springer, vol. 54(2), pages 333-353, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:1118-1136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.