IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v4y2017i4d10.1007_s40745-017-0114-3.html
   My bibliography  Save this article

Comparisons of Methods of Estimation for the NH Distribution

Author

Listed:
  • Sanku Dey

    (King Abdulaziz University)

  • Chunfang Zhang

    (Northwestern Polytechnical University)

  • A. Asgharzadeh

    (University of Mazandaran)

  • M. Ghorbannezhad

    (University of Mazandaran)

Abstract

The extended exponential distribution due to Nadarajah and Haghighi (Stat J Theor Appl Stat 45(6):543–558, 2011) is an alternative and always provides better fits than the gamma, Weibull and the generalized exponential distributions whenever the data contains zero values. This article addresses different methods of estimation of the unknown parameters from both frequentist and Bayesian view points of Nadarajah and Haghighi (in short NH ) distribution. We briefly describe different frequentist approaches, namely, maximum likelihood estimators, moment estimators, percentile estimators, least square and weighted least square estimators and compare them using extensive numerical simulations. Next we consider Bayes estimation under different types of loss functions (symmetric and asymmetric loss functions) using gamma priors for both shape and scale parameters. Besides, the asymptotic confidence intervals, two parametric bootstrap confidence intervals using frequentist approaches are provided to compare with Bayes credible intervals. Furthermore, the Bayes estimators and their respective posterior risks are computed and compared using Markov chain Monte Carlo algorithm. Finally, two real data sets have been analyzed for illustrative purposes.

Suggested Citation

  • Sanku Dey & Chunfang Zhang & A. Asgharzadeh & M. Ghorbannezhad, 2017. "Comparisons of Methods of Estimation for the NH Distribution," Annals of Data Science, Springer, vol. 4(4), pages 441-455, December.
  • Handle: RePEc:spr:aodasc:v:4:y:2017:i:4:d:10.1007_s40745-017-0114-3
    DOI: 10.1007/s40745-017-0114-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-017-0114-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-017-0114-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Raqab, Mohammad Z., 2005. "Generalized Rayleigh distribution: different methods of estimations," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 187-200, April.
    2. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samir K. Ashour & Ahmed A. El-Sheikh & Ahmed Elshahhat, 2022. "Inferences and Optimal Censoring Schemes for Progressively First-Failure Censored Nadarajah-Haghighi Distribution," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 885-923, August.
    2. Ibrahim Elbatal & Naif Alotaibi & Salem A. Alyami & Mohammed Elgarhy & Ahmed R. El-Saeed, 2022. "Bayesian and Non-Bayesian Estimation of the Nadaraj ah–Haghighi Distribution: Using Progressive Type-1 Censoring Scheme," Mathematics, MDPI, vol. 10(5), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    2. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    3. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    4. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    5. Tanachai Somsak & Thanapong Suwanasri & Cattareeya Suwanasri, 2021. "Lifetime Estimation Based Health Index and Conditional Factor for Underground Cable System," Energies, MDPI, vol. 14(23), pages 1-15, December.
    6. Hassan M. Okasha & Abdulkareem M. Basheer & A. H. El-Baz, 2021. "Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations," Annals of Data Science, Springer, vol. 8(4), pages 769-784, December.
    7. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    8. Ilhan Usta, 2013. "Different estimation methods for the parameters of the extended Burr XII distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 397-414, February.
    9. Ruhul Ali Khan & Dhrubasish Bhattacharyya & Murari Mitra, 2021. "Exact and asymptotic tests of exponentiality against nonmonotonic mean time to failure type alternatives," Statistical Papers, Springer, vol. 62(6), pages 3015-3045, December.
    10. S. Nadarajah & S. Bakar, 2013. "A new R package for actuarial survival models," Computational Statistics, Springer, vol. 28(5), pages 2139-2160, October.
    11. Kousik Maiti & Suchandan Kayal & Aditi Kar Gangopadhyay, 2024. "On Progressively Censored Generalized X-Exponential Distribution: (Non) Bayesian Estimation with an Application to Bladder Cancer Data," Annals of Data Science, Springer, vol. 11(5), pages 1761-1798, October.
    12. C. Satheesh Kumar & S. Dharmaja, 2014. "On some properties of Kies distribution," METRON, Springer;Sapienza Università di Roma, vol. 72(1), pages 97-122, April.
    13. Abhimanyu Singh Yadav & S. K. Singh & Umesh Singh, 2020. "Statistical properties and different methods of estimation for extended weighted inverted Rayleigh distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 119-141, June.
    14. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Ziyad A. Alhussain & Essam A. Ahmed, 2020. "Estimation of exponentiated Nadarajah-Haghighi distribution under progressively type-II censored sample with application to bladder cancer data," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 631-657, June.
    16. Saralees Nadarajah & Gauss Cordeiro & Edwin Ortega, 2013. "The exponentiated Weibull distribution: a survey," Statistical Papers, Springer, vol. 54(3), pages 839-877, August.
    17. Chen, D.G. & Lio, Y.L., 2010. "Parameter estimations for generalized exponential distribution under progressive type-I interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1581-1591, June.
    18. Manoj Kumar Rastogi & Yogesh Mani Tripathi, 2014. "Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2375-2405, November.
    19. Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
    20. Devendra Kumar & Manoj Kumar, 2019. "A New Generalization of the Extended Exponential Distribution with an Application," Annals of Data Science, Springer, vol. 6(3), pages 441-462, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:4:y:2017:i:4:d:10.1007_s40745-017-0114-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.