IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i3d10.1007_s00180-018-0859-y.html
   My bibliography  Save this article

On the robustness of an epsilon skew extension for Burr III distribution on the real line

Author

Listed:
  • Mehmet Niyazi Çankaya

    (Applied Sciences School, Department of International Trading
    Uşak University)

  • Abdullah Yalçınkaya

    (Ankara University)

  • Ömer Altındaǧ

    (Bilecik Şeyh Edebali University)

  • Olcay Arslan

    (Ankara University)

Abstract

Burr III (BIII) distribution is used in a wide variety of fields, such as lifetime data analysis, reliability theory, and financial literature, and suchlike. It is defined on the positive axis and has two shape parameters, say c and k. These shape parameters make the distribution quite flexible. They also control the tail behaviour of the distribution. In this study, we extend BIII distribution to the real line and also add a skewness parameter, say $$\varepsilon $$ ε , with an epsilon skew extension approach. When the parameters c and k have a relationship such that $$ck \le 1 $$ c k ≤ 1 , it is skew unimodal. Otherwise, it is skew bimodal with the same level of peaks on the negative and positive sides of the real line. Thus, the epsilon skew extension of Burr III (ESBIII) distribution with only three parameters can provide adequate fits for data sets that may have heavy-tailedness, skewness, unimodality or bimodality. A location-scale form of this distribution is also given. Distributional properties are investigated. The maximum likelihood (ML) estimation method for the parameters of ESBIII is considered. The robustness properties of the ML estimators are studied in terms of the boundedness of the influence function. Further, tail behaviour of ESBIII distribution is also examined to explore the robustness of ESBIII distribution against the outliers. The modelling capacity of this distribution is illustrated using two real data examples.

Suggested Citation

  • Mehmet Niyazi Çankaya & Abdullah Yalçınkaya & Ömer Altındaǧ & Olcay Arslan, 2019. "On the robustness of an epsilon skew extension for Burr III distribution on the real line," Computational Statistics, Springer, vol. 34(3), pages 1247-1273, September.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-018-0859-y
    DOI: 10.1007/s00180-018-0859-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0859-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0859-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mineo, Angelo & Ruggieri, Mariantonietta, 2005. "A Software Tool for the Exponential Power Distribution: The normalp Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i04).
    2. Sukru Acitas & Pelin Kasap & Birdal Senoglu & Olcay Arslan, 2013. "One-step M -estimators: Jones and Faddy's skewed t -distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1545-1560, July.
    3. Jizba, Petr & Korbel, Jan, 2016. "On q-non-extensive statistics with non-Tsallisian entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 808-827.
    4. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the t‐distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174, February.
    5. A. Jamalizadeh & A. Arabpour & N. Balakrishnan, 2011. "A generalized skew two-piece skew-normal distribution," Statistical Papers, Springer, vol. 52(2), pages 431-446, May.
    6. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    7. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    8. Shao, Quanxi & Chen, Yongqin D. & Zhang, Lu, 2008. "An extension of three-parameter Burr III distribution for low-flow frequency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1304-1314, January.
    9. Wenhao Gui, 2014. "A generalization of the slashed distribution via alpha skew normal distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 547-563, November.
    10. M.Y. Hassan & M.Y. El-Bassiouni, 2016. "Bimodal skew-symmetric normal distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(5), pages 1527-1541, March.
    11. Purdom Elizabeth & Holmes Susan P, 2005. "Error Distribution for Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-35, July.
    12. Çankaya, Mehmet Niyazi & Korbel, Jan, 2017. "On statistical properties of Jizba–Arimitsu hybrid entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    2. Jorge E. Galán & María Rodríguez Moreno, 2020. "At-risk measures and financial stability," Financial Stability Review, Banco de España, issue Autumn.
    3. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    4. Masoud Faridi & Majid Jafari Khaledi, 2022. "The polar-generalized normal distribution: properties, Bayesian estimation and applications," Statistical Papers, Springer, vol. 63(2), pages 571-603, April.
    5. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    6. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    7. Ekaterina Abramova & Derek Bunn, 2020. "Forecasting the Intra-Day Spread Densities of Electricity Prices," Papers 2002.10566, arXiv.org.
    8. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    9. Abdou Kâ Diongue & Dominique Guegan & Rodney C. Wolff, 2008. "Exact Maximum Likelihood estimation for the BL-GARCH model under elliptical distributed innovations," Post-Print halshs-00270719, HAL.
    10. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    11. Ekaterina Abramova & Derek Bunn, 2019. "Estimating Dynamic Conditional Spread Densities to Optimise Daily Storage Trading of Electricity," Papers 1903.06668, arXiv.org.
    12. Abdou Kâ Diongue & Dominique Guegan, 2008. "Estimation of k-factor GIGARCH process : a Monte Carlo study," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00235179, HAL.
    13. Teimouri, Mahdi & Nadarajah, Saralees, 2013. "On simulating Balakrishnan skew-normal variates," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 52-58.
    14. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    15. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    16. Abdou Kâ Diongue & Dominique Guegan & Rodney C. Wolff, 2010. "BL-GARCH model with elliptical distributed innovations," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00368340, HAL.
    17. Derek W. Bunn & Angelica Gianfreda & Stefan Kermer, 2018. "A Trading-Based Evaluation of Density Forecasts in a Real-Time Electricity Market," Energies, MDPI, vol. 11(10), pages 1-13, October.
    18. Rossi, Barbara & Ganics, Gergely & Sekhposyan, Tatevik, 2020. "From Fixed-event to Fixed-horizon Density Forecasts: Obtaining Measures of Multi-horizon Uncertainty from Survey Density Foreca," CEPR Discussion Papers 14267, C.E.P.R. Discussion Papers.
    19. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    20. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-018-0859-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.