IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1684-d422631.html
   My bibliography  Save this article

The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data

Author

Listed:
  • Maha A. D. Aldahlan

    (Department of Statistics, College of Science, University of Jeddah, Jeddah 21944, Saudi Arabia)

  • Ahmed Z. Afify

    (Department of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt)

Abstract

In this paper, we studied the problem of estimating the odd exponentiated half-logistic exponential (OEHLE) parameters using several frequentist estimation methods. Parameter estimation provides a guideline for choosing the best method of estimation for the model parameters, which would be very important for reliability engineers and applied statisticians. We considered eight estimation methods, called maximum likelihood, maximum product of spacing, least squares, Cramér–von Mises, weighted least squares, percentiles, Anderson–Darling, and right-tail Anderson–Darling for estimating its parameters. The finite sample properties of the parameter estimates are discussed using Monte Carlo simulations. In order to obtain the ordering performance of these estimators, we considered the partial and overall ranks of different estimation methods for all parameter combinations. The results illustrate that all classical estimators perform very well and their performance ordering, based on overall ranks, from best to worst, is the maximum product of spacing, maximum likelihood, Anderson–Darling, percentiles, weighted least squares, least squares, right-tail Anderson–Darling, and Cramér–von-Mises estimators for all the studied cases. Finally, the practical importance of the OEHLE model was illustrated by analysing a real data set, proving that the OEHLE distribution can perform better than some well known existing extensions of the exponential distribution.

Suggested Citation

  • Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1684-:d:422631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kundu, Debasis & Raqab, Mohammad Z., 2005. "Generalized Rayleigh distribution: different methods of estimations," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 187-200, April.
    2. Abbas Mahdavi & Debasis Kundu, 2017. "A new method for generating distributions with an application to exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6543-6557, July.
    3. Morad Alizadeh & Ahmed Z. Afify & M. S. Eliwa & Sajid Ali, 2020. "The odd log-logistic Lindley-G family of distributions: properties, Bayesian and non-Bayesian estimation with applications," Computational Statistics, Springer, vol. 35(1), pages 281-308, March.
    4. Luis Gustavo Bastos Pinho & Gauss Moutinho Cordeiro & Juvêncio Santos Nobre, 2015. "The Harris Extended Exponential Distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(16), pages 3486-3502, August.
    5. Luceno, Alberto, 2006. "Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 904-917, November.
    6. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    7. Miroslav Ristić & Debasis Kundu, 2015. "Marshall-Olkin generalized exponential distribution," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 317-333, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mashail M. AL Sobhi, 2020. "The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    2. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    3. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    4. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    5. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    6. Abdisalam Hassan Muse & Samuel M. Mwalili & Oscar Ngesa, 2021. "On the Log-Logistic Distribution and Its Generalizations: A Survey," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-93, June.
    7. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    8. Saralees Nadarajah & Gauss Cordeiro & Edwin Ortega, 2013. "The exponentiated Weibull distribution: a survey," Statistical Papers, Springer, vol. 54(3), pages 839-877, August.
    9. Devendra Kumar & Manoj Kumar, 2019. "A New Generalization of the Extended Exponential Distribution with an Application," Annals of Data Science, Springer, vol. 6(3), pages 441-462, September.
    10. Ahmed Z. Afify & Osama Abdo Mohamed, 2020. "A New Three-Parameter Exponential Distribution with Variable Shapes for the Hazard Rate: Estimation and Applications," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    11. Jese Maria Sarabia & Enrique Castillo, 2005. "About a class of max-stable families with applications to income distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 505-527.
    12. Jemilohun Vincent Gbenga & Ipinyomi Reuben Adeyemi, 2022. "Alpha Power Extended Inverse Weibull Poisson Distribution: Properties, Inference, and Applications to lifetime data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(1), pages 1-10, March.
    13. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    14. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    15. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    16. Ghosh Indranil, 2019. "On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey," Stochastics and Quality Control, De Gruyter, vol. 34(2), pages 115-121, December.
    17. Abdus Saboor & Muhammad Nauman Khan & Gauss M. Cordeiro & Marcelino A. R. Pascoa & Juliano Bortolini & Shahid Mubeen, 2019. "Modified beta modified-Weibull distribution," Computational Statistics, Springer, vol. 34(1), pages 173-199, March.
    18. Dominique Guegan & Bertrand K. Hassani, 2011. "Operational risk: a Basel II++ step before Basel III," Documents de travail du Centre d'Economie de la Sorbonne 11053, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    20. Sajid Hussain & Mahmood Ul Hassan & Muhammad Sajid Rashid & Rashid Ahmed, 2023. "The Exponentiated Power Alpha Index Generalized Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 11(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1684-:d:422631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.