IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i4d10.1007_s40745-023-00463-7.html
   My bibliography  Save this article

Inferences Based on Correlated Randomly Censored Gumbel’s Type-I Bivariate Exponential Distribution

Author

Listed:
  • Hare Krishna

    (Ch. Charan Singh University)

  • Rajni Goel

    (Chandigarh University)

Abstract

The formal random censoring plan has been extensively studied earlier in statistical literature by numerous researchers to deal with dropouts or unintentional random removals in life-testing experiments. All of them considered failure time and censoring time to be independent. But there are several situations in which one observes that as the failure time of an item increases, the censoring time decreases. In medical studies or especially in clinical trials, the occurrence of dropouts or unintentional removals is frequently observed in such a way that as the treatment (failure) time increases, the dropout (censoring) time decreases. No work has yet been found that deals with such correlated failure and censoring times. Therefore, in this article, we assume that the failure time is negatively correlated with censoring time, and they follow Gumbel’s type-I bivariate exponential distribution. We compute the maximum likelihood estimates of the model parameters. Using the Monte Carlo Markov chain methods, the Bayesian estimators of the parameters are calculated. The expected experimental time is also evaluated. Finally, for illustrative purposes, a numerical study and a real data set analysis are given.

Suggested Citation

  • Hare Krishna & Rajni Goel, 2024. "Inferences Based on Correlated Randomly Censored Gumbel’s Type-I Bivariate Exponential Distribution," Annals of Data Science, Springer, vol. 11(4), pages 1185-1207, August.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:4:d:10.1007_s40745-023-00463-7
    DOI: 10.1007/s40745-023-00463-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-023-00463-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-023-00463-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapil Kumar, 2018. "Classical and Bayesian estimation in log-logistic distribution under random censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(2), pages 440-451, April.
    2. Muhammad Danish & Muhammad Aslam, 2013. "Bayesian estimation for randomly censored generalized exponential distribution under asymmetric loss functions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(5), pages 1106-1119.
    3. M. E. Ghitany & S. Al-Awadhi, 2002. "Maximum likelihood estimation of Burr XII distribution parameters under random censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(7), pages 955-965.
    4. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    5. Kapil Kumar & Indrajeet Kumar, 2019. "Estimation in Inverse Weibull Distribution Based on Randomly Censored Data," Statistica, Department of Statistics, University of Bologna, vol. 79(1), pages 47-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neha Goel & Hare Krishna, 2022. "Different methods of estimation in two parameter Geometric distribution with randomly censored data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1652-1665, August.
    2. H. Krishna & N. Goel, 2018. "Classical and Bayesian inference in two parameter exponential distribution with randomly censored data," Computational Statistics, Springer, vol. 33(1), pages 249-275, March.
    3. Indrajeet Kumar & Shishir Kumar Jha & Kapil Kumar, 2023. "On Some Estimation Methods for the Inverse Pareto Distribution," Annals of Data Science, Springer, vol. 10(4), pages 1035-1068, August.
    4. Rajni Goel & Hare Krishna, 2024. "A study of accidental breakages in progressively type-ii censored lifetime experiments," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2105-2119, June.
    5. Neha Goel, 2018. "Estimation Methods in Clinical Trials with Randomly Censored Exponential Healing Times and Rayleigh Dropout Times," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(3), pages 61-68, October.
    6. Indrajeet Kumar & Kapil Kumar, 2022. "On estimation of $$P(V," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 189-202, February.
    7. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    8. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    9. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    10. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    11. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    12. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    13. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    14. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    15. Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
    16. A. R. Sherwani & Q. M. Ali, 2023. "Parametric Classification using Fuzzy Approach for Handling the Problem of Mixed Pixels in Ground Truth Data for a Satellite Image," Annals of Data Science, Springer, vol. 10(6), pages 1459-1472, December.
    17. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    18. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
    19. Sankalp Loomba & Madhavi Dave & Harshal Arolkar & Sachin Sharma, 2024. "Sentiment Analysis using Dictionary-Based Lexicon Approach: Analysis on the Opinion of Indian Community for the Topic of Cryptocurrency," Annals of Data Science, Springer, vol. 11(6), pages 2019-2034, December.
    20. Desmond Chekwube Bartholomew & Chrysogonus Chinagorom Nwaigwe & Ukamaka Cynthia Orumie & Godwin Onyeka Nwafor, 2024. "Intervention Analysis of COVID-19 Vaccination in Nigeria: The Naive Solution Versus Interrupted Time Series," Annals of Data Science, Springer, vol. 11(5), pages 1609-1634, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:4:d:10.1007_s40745-023-00463-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.