IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v32y2005i2p173-188.html
   My bibliography  Save this article

Enriched biplots for canonical correlation analysis

Author

Listed:
  • Jan Graffelman

Abstract

This paper discusses biplots of the between-set correlation matrix obtained by canonical correlation analysis. It is shown that these biplots can be enriched with the representation of the cases of the original data matrices. A representation of the cases that is optimal in the generalized least squares sense is obtained by the superposition of a scatterplot of the canonical variates on the biplot of the between-set correlation matrix. Goodness of fit statistics for all correlation and data matrices involved in canonical correlation analysis are discussed. It is shown that adequacy and redundancy coefficients are in fact statistics that express the goodness of fit of the original data matrices in the biplot. The within-set correlation matrix that is represented in standard coordinates always has a better goodness of fit than the within-set correlation matrix that is represented in principal coordinates. Given certain scalings, the scalar products between variable vectors approximate correlations better than the cosines of angles between variable vectors. Several data sets are used to illustrate the results.

Suggested Citation

  • Jan Graffelman, 2005. "Enriched biplots for canonical correlation analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(2), pages 173-188.
  • Handle: RePEc:taf:japsta:v:32:y:2005:i:2:p:173-188
    DOI: 10.1080/02664760500054202
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760500054202
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760500054202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cajo Braak, 1990. "Interpreting canonical correlation analysis through biplots of structure correlations and weights," Psychometrika, Springer;The Psychometric Society, vol. 55(3), pages 519-531, September.
    2. K. Ruben Gabriel, 2002. "Goodness of fit of biplots and correspondence analysis," Biometrika, Biometrika Trust, vol. 89(2), pages 423-436, June.
    3. Arnold Wollenberg, 1977. "Redundancy analysis an alternative for canonical correlation analysis," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 207-219, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cook, Judith A. & Razzano, Lisa & Cappelleri, Joseph C., 1996. "Canonical correlation analysis of residential and vocational outcomes following psychiatric rehabilitation," Evaluation and Program Planning, Elsevier, vol. 19(4), pages 351-363, November.
    2. Michael Greenacre & Paul Lewi, 2005. "Distributional equivalence and subcompositional coherence in the analysis of contingency tables, ratio-scale measurements and compositional data," Economics Working Papers 908, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 2007.
    3. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    4. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.
    5. Miaomiao Yang & Keli Zhang & Chenlu Huang & Qinke Yang, 2022. "Effects of Content of Soil Rock Fragments on Soil Erodibility in China," IJERPH, MDPI, vol. 19(2), pages 1-19, January.
    6. Abby Israëls, 1986. "Reviews," Psychometrika, Springer;The Psychometric Society, vol. 51(3), pages 495-497, September.
    7. Takane, Yoshio & Jung, Sunho, 2009. "Regularized nonsymmetric correspondence analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3159-3170, June.
    8. John Zilvinskis & Anthony A. Masseria & Gary R. Pike, 2017. "Student Engagement and Student Learning: Examining the Convergent and Discriminant Validity of the Revised National Survey of Student Engagement," Research in Higher Education, Springer;Association for Institutional Research, vol. 58(8), pages 880-903, December.
    9. Mariusz Malinowski, 2021. "“Green Energy” and the Standard of Living of the EU Residents," Energies, MDPI, vol. 14(8), pages 1-35, April.
    10. Lazraq, Aziz & Cléroux, Robert, 2001. "Statistical Inference Concerning Several Redundancy Indices," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 71-88, October.
    11. Yvonne Milker & Manuel F G Weinkauf & Jürgen Titschack & Andre Freiwald & Stefan Krüger & Frans J Jorissen & Gerhard Schmiedl, 2017. "Testing the applicability of a benthic foraminiferal-based transfer function for the reconstruction of paleowater depth changes in Rhodes (Greece) during the early Pleistocene," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-30, November.
    12. Cuadras, Carles M. & Greenacre, Michael, 2022. "A short history of statistical association: From correlation to correspondence analysis to copulas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    13. Vittadini, Giorgio & Minotti, Simona C. & Fattore, Marco & Lovaglio, Pietro G., 2007. "On the relationships among latent variables and residuals in PLS path modeling: The formative-reflective scheme," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5828-5846, August.
    14. Michael Greenacre, 2017. "Towards a pragmatic approach to compositional data analysis," Economics Working Papers 1554, Department of Economics and Business, Universitat Pompeu Fabra.
    15. Maria Iannario & Rosaria Romano & Domenico Vistocco, 2023. "Dyadic analysis for multi-block data in sport surveys analytics," Annals of Operations Research, Springer, vol. 325(1), pages 701-714, June.
    16. Golob, Thomas F. & Recker, Wilfred W. & Alvarez, Veronica, 2002. "Freeway Safety as a Function of Traffic Flow: The FITS Tool for Evaluating ATMS Operations," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1tc5r61j, Institute of Transportation Studies, UC Berkeley.
    17. Golob, Thomas F. & Recker, Wilfred W., 2003. "Relationships Among Urban Freeway Accidents, Traffic Flow, Weather, and Lighting Conditions," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt61v6d9kz, Institute of Transportation Studies, UC Berkeley.
    18. Pietro Lovaglio & Giorgio Vittadini, 2013. "Multilevel dimensionality-reduction methods," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 183-207, June.
    19. Michael Greenacre & Paul Lewi, 2009. "Distributional Equivalence and Subcompositional Coherence in the Analysis of Compositional Data, Contingency Tables and Ratio-Scale Measurements," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 29-54, April.
    20. Yupeng Sang & Zhiqin Long & Xuming Dan & Jiajun Feng & Tingting Shi & Changfu Jia & Xinxin Zhang & Qiang Lai & Guanglei Yang & Hongying Zhang & Xiaoting Xu & Huanhuan Liu & Yuanzhong Jiang & Pär K. In, 2022. "Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:32:y:2005:i:2:p:173-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.