IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/59.html
   My bibliography  Save this paper

Curve Forecasting by Functional Autoregression

Author

Listed:
  • A. Onatski
  • V. Karguine

Abstract

Data in which each observation is a curve occur in many applied problems. This paper explores prediction in time series in which the data is generated by a curve-valued autoregression process. It develops a novel technique, the predictive factor decomposition, for estimation of the autoregression operator, which is designed to be better suited for prediction purposes than the principal components method. The technique is based on finding a reduced-rank approximation to the autoregression operator that minimizes the norm of the expected prediction error. Implementing this idea, we relate the operator approximation problem to an eigenvalue problem for an operator pencil that is formed by the cross-covariance and covariance operators of the autoregressive process. We develop an estimation method based on regularization of the empirical counterpart of this eigenvalue problem, and prove that with a certain choice of parameters, the method consistently estimates the predictive factors. In addition, we show that forecasts based on the estimated predictive factors converge in probability to the optimal forecasts. The new method is illustrated by an analysis of the dynamics of the term structure of Eurodollar futures rates. We restrict the sample to the period of normal growth and find that in this subsample the predictive factor technique not only outperforms the principal components method but also performs on par with the best available prediction methods

Suggested Citation

  • A. Onatski & V. Karguine, 2005. "Curve Forecasting by Functional Autoregression," Computing in Economics and Finance 2005 59, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:59
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.14289.1105970575.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jean Fortier, 1966. "Simultaneous nonlinear prediction," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 447-455, December.
    2. Jean Fortier, 1966. "Simultaneous linear prediction," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 369-381, September.
    3. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    4. Philippe C. Besse & Herve Cardot & David B. Stephenson, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687, December.
    5. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    6. David Bolder & Scott Gusba, 2002. "Exponentials, Polynomials, and Fourier Series: More Yield Curve Modelling at the Bank of Canada," Staff Working Papers 02-29, Bank of Canada.
    7. Robert R. Bliss, 1997. "Movements in the term structure of interest rates," Economic Review, Federal Reserve Bank of Atlanta, vol. 82(Q 4), pages 16-33.
    8. Arnold Wollenberg, 1977. "Redundancy analysis an alternative for canonical correlation analysis," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 207-219, June.
    9. He, Guozhong & Müller, Hans-Georg & Wang, Jane-Ling, 2003. "Functional canonical analysis for square integrable stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 54-77, April.
    10. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    11. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clive Bowsher & Roland Meeks, 2006. "High Dimensional Yield Curves: Models and Forecasting," Economics Series Working Papers 2006-FE-11, University of Oxford, Department of Economics.
    2. David Bolder, 2006. "Modelling Term-Structure Dynamics for Risk Management: A Practitioner's Perspective," Staff Working Papers 06-48, Bank of Canada.
    3. Koopman, Siem Jan & van der Wel, Michel, 2013. "Forecasting the US term structure of interest rates using a macroeconomic smooth dynamic factor model," International Journal of Forecasting, Elsevier, vol. 29(4), pages 676-694.
    4. Xu, Meng & Li, Jialiang & Chen, Ying, 2017. "Varying coefficient functional autoregressive model with application to the U.S. treasuries," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 168-183.
    5. Zura Kakushadze & Willie Yu, 2020. "Machine Learning Treasury Yields," Papers 2003.05095, arXiv.org.
    6. Jos Berge, 1985. "On the relationship between Fortier's simultaneous linear prediction and van den Wollenberg's redundancy analysis," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 121-122, March.
    7. Zura Kakushadze & Willie Yu, 2020. "Machine Learning Treasury Yields," Bulletin of Applied Economics, Risk Market Journals, vol. 7(1), pages 1-65.
    8. Kargin, Vladislav, 2015. "On estimation in the reduced-rank regression with a large number of responses and predictors," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 377-394.
    9. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    10. Andr? Kurmann & Christopher Otrok, 2013. "News Shocks and the Slope of the Term Structure of Interest Rates," American Economic Review, American Economic Association, vol. 103(6), pages 2612-2632, October.
    11. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    12. Ciccarelli, Matteo & Osbat, Chiara, 2017. "Low inflation in the euro area: Causes and consequences," Occasional Paper Series 181, European Central Bank.
    13. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    14. Joslin, Scott & Le, Anh & Singleton, Kenneth J., 2013. "Why Gaussian macro-finance term structure models are (nearly) unconstrained factor-VARs," Journal of Financial Economics, Elsevier, vol. 109(3), pages 604-622.
    15. Borus Jungbacker & Siem Jan Koopman & Michel van der Wel, 0000. "Dynamic Factor Models with Smooth Loadings for Analyzing the Term Structure of Interest Rates," Tinbergen Institute Discussion Papers 09-041/4, Tinbergen Institute, revised 17 Sep 2010.
    16. Borak, Szymon & Härdle, Wolfgang Karl & Mammen, Enno & Park, Byeong U., 2007. "Time series modelling with semiparametric factor dynamics," SFB 649 Discussion Papers 2007-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    18. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
    19. repec:hum:wpaper:sfb649dp2005-024 is not listed on IDEAS
    20. Chen, Ying & Chua, Wee Song & Härdle, Wolfgang Karl, 2016. "Forecasting limit order book liquidity supply-demand curves with functional AutoRegressive dynamics," SFB 649 Discussion Papers 2016-025, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    21. Hautsch, Nikolaus & Ou, Yangguoyi, 2012. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2988-3007.

    More about this item

    Keywords

    Functional data analysis; Dimension reduction; Reduced-rank regression; Principal component; Predictive factor; Generalized eigenvalue problem; Term structure; Interest rates;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.