Dyadic analysis for multi-block data in sport surveys analytics
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-022-04864-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Goldine Gleser & Philip DuBois, 1951. "A successive approximation method of maximizing test validity," Psychometrika, Springer;The Psychometric Society, vol. 16(1), pages 129-139, March.
- Cristina Davino & Rosaria Romano & Domenico Vistocco, 2020. "On the use of quantile regression to deal with heterogeneity: the case of multi-block data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 771-784, December.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- J. Gower, 1975. "Generalized procrustes analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 33-51, March.
- Arnold Wollenberg, 1977. "Redundancy analysis an alternative for canonical correlation analysis," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 207-219, June.
- Peres-Neto, Pedro R. & Jackson, Donald A. & Somers, Keith M., 2005. "How many principal components? stopping rules for determining the number of non-trivial axes revisited," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 974-997, June.
- Tim McGarry, 2009. "Applied and theoretical perspectives of performance analysis in sport: Scientific issues and challenges," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 9(1), pages 128-140, April.
- Koenker, Roger, 2000. "Galton, Edgeworth, Frisch, and prospects for quantile regression in econometrics," Journal of Econometrics, Elsevier, vol. 95(2), pages 347-374, April.
- Josse, Julie & Husson, François, 2012. "Selecting the number of components in principal component analysis using cross-validation approximations," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1869-1879.
- Johannes Forkman & Julie Josse & Hans-Peter Piepho, 2019. "Hypothesis Tests for Principal Component Analysis When Variables are Standardized," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 289-308, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Pedro Telhado Pereira & Pedro Silva Martins, 2000.
"Does education reduce wage inequality? Quantile regressions evidence from fifteen European countries,"
Nova SBE Working Paper Series
wp379, Universidade Nova de Lisboa, Nova School of Business and Economics.
- Pereira, Pedro T. & Martins, Pedro S., 2000. "Does Education Reduce Wage Inequality? Quantile Regressions Evidence from Fifteen European Countries," IZA Discussion Papers 120, Institute of Labor Economics (IZA).
- Pereira, Pedro Telhado & Martins, Pedro Silva, 2002. "Does Education Reduce Wage Inequality? Quantile Regressions Evidence from Fifteen European Countries," Discussion Papers 709, The Research Institute of the Finnish Economy.
- Marcio Laurini, 2007.
"A note on the use of quantile regression in beta convergence analysis,"
Economics Bulletin, AccessEcon, vol. 3(52), pages 1-8.
- Laurini, Márcio P., 2007. "A note on the use of quantile regression in beta convergence analysis," Insper Working Papers wpe_95, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
- Anastasia I. Koutsomanoli‐Filippaki & Emmanuel C. Mamatzakis, 2011.
"Efficiency under quantile regression: What is the relationship with risk in the EU banking industry?,"
Review of Financial Economics, John Wiley & Sons, vol. 20(2), pages 84-95, May.
- Koutsomanoli-Filippaki, Anastasia I. & Mamatzakis, Emmanuel C., 2011. "Efficiency under quantile regression: What is the relationship with risk in the EU banking industry?," Review of Financial Economics, Elsevier, vol. 20(2), pages 84-95, May.
- Chang, Hao-Wen & Lin, Chinho, 2023. "Currency portfolio behavior in seven major Asian markets," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 540-559.
- Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
- Richard Spady & Sami Stouli, 2020. "Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions," Papers 2011.06416, arXiv.org.
- Chen, Mei-Ping & Lee, Chien-Chiang & Hsu, Yi-Chung, 2017. "Investor sentiment and country exchange traded funds: Does economic freedom matter?," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 285-299.
- Omid Ranjbar & Chien-Chiang Lee & Tsangyao Chang & Mei-Ping Chen, 2014. "Income Convergence in African Countries: Evidence from a Stationary Test With Multiple Structural Breaks," South African Journal of Economics, Economic Society of South Africa, vol. 82(3), pages 371-391, September.
- Simila, Timo, 2006. "Self-organizing map visualizing conditional quantile functions with multidimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 2097-2110, April.
- Dray, Stephane, 2008. "On the number of principal components: A test of dimensionality based on measurements of similarity between matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2228-2237, January.
- Li, Ming-Yuan Leon, 2009. "Value or volume strategy?," Finance Research Letters, Elsevier, vol. 6(4), pages 210-218, December.
- Jungsik Noh & Sangyeol Lee, 2016. "Quantile Regression for Location-Scale Time Series Models with Conditional Heteroscedasticity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 700-720, September.
- Victor Chernozhukov & Iván Fernández-Val & Blaise Melly, 2022.
"Fast algorithms for the quantile regression process,"
Empirical Economics, Springer, vol. 62(1), pages 7-33, January.
- Victor Chernozhukov & Iv'an Fern'andez-Val & Blaise Melly, 2019. "Fast Algorithms for the Quantile Regression Process," Papers 1909.05782, arXiv.org, revised Apr 2020.
- Manuel Landajo & Javier De Andrés & Pedro Lorca, 2008. "Measuring firm performance by using linear and non‐parametric quantile regressions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(2), pages 227-250, April.
- Cuadras, Carles M. & Greenacre, Michael, 2022. "A short history of statistical association: From correlation to correspondence analysis to copulas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Maria Letizia Giorgetti, 2001. "Quantile Regression in Lower Bound Estimation," STICERD - Economics of Industry Papers 29, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Pietro Lovaglio & Giorgio Vittadini, 2013. "Multilevel dimensionality-reduction methods," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 183-207, June.
- Balbi, S & Esposito, V, 2000. "Rotated canonical analysis onto a reference subspace," Computational Statistics & Data Analysis, Elsevier, vol. 32(3-4), pages 395-410, January.
More about this item
Keywords
Athletes’/coaches’ perception; Dyadic analysis; Complex data structures; Quantile regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:325:y:2023:i:1:d:10.1007_s10479-022-04864-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.