IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0188447.html
   My bibliography  Save this article

Testing the applicability of a benthic foraminiferal-based transfer function for the reconstruction of paleowater depth changes in Rhodes (Greece) during the early Pleistocene

Author

Listed:
  • Yvonne Milker
  • Manuel F G Weinkauf
  • Jürgen Titschack
  • Andre Freiwald
  • Stefan Krüger
  • Frans J Jorissen
  • Gerhard Schmiedl

Abstract

We present paleo-water depth reconstructions for the Pefka E section deposited on the island of Rhodes (Greece) during the early Pleistocene. For these reconstructions, a transfer function (TF) using modern benthic foraminifera surface samples from the Adriatic and Western Mediterranean Seas has been developed. The TF model gives an overall predictive accuracy of ~50 m over a water depth range of ~1200 m. Two separate TF models for shallower and deeper water depth ranges indicate a good predictive accuracy of 9 m for shallower water depths (0–200 m) but far less accuracy of 130 m for deeper water depths (200–1200 m) due to uneven sampling along the water depth gradient. To test the robustness of the TF, we randomly selected modern samples to develop random TFs, showing that the model is robust for water depths between 20 and 850 m while greater water depths are underestimated. We applied the TF to the Pefka E fossil data set. The goodness-of-fit statistics showed that most fossil samples have a poor to extremely poor fit to water depth. We interpret this as a consequence of a lack of modern analogues for the fossil samples and removed all samples with extremely poor fit. To test the robustness and significance of the reconstructions, we compared them to reconstructions from an alternative TF model based on the modern analogue technique and applied the randomization TF test. We found our estimates to be robust and significant at the 95% confidence level, but we also observed that our estimates are strongly overprinted by orbital, precession-driven changes in paleo-productivity and corrected our estimates by filtering out the precession-related component. We compared our corrected record to reconstructions based on a modified plankton/benthos (P/B) ratio, excluding infaunal species, and to stable oxygen isotope data from the same section, as well as to paleo-water depth estimates for the Lindos Bay Formation of other sediment sections of Rhodes. These comparisons indicate that our orbital-corrected reconstructions are reasonable and reflect major tectonic movements of Rhodes during the early Pleistocene.

Suggested Citation

  • Yvonne Milker & Manuel F G Weinkauf & Jürgen Titschack & Andre Freiwald & Stefan Krüger & Frans J Jorissen & Gerhard Schmiedl, 2017. "Testing the applicability of a benthic foraminiferal-based transfer function for the reconstruction of paleowater depth changes in Rhodes (Greece) during the early Pleistocene," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-30, November.
  • Handle: RePEc:plo:pone00:0188447
    DOI: 10.1371/journal.pone.0188447
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188447
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188447&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0188447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simpson, Gavin L., 2007. "Analogue Methods in Palaeoecology: Using the analogue Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i02).
    2. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(3), pages 243-243, December.
    3. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(2), pages 129-130, November.
    4. Arnold Wollenberg, 1977. "Redundancy analysis an alternative for canonical correlation analysis," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 207-219, June.
    5. R. Bintanja & R. S. W. van de Wal, 2008. "North American ice-sheet dynamics and the onset of 100,000-year glacial cycles," Nature, Nature, vol. 454(7206), pages 869-872, August.
    6. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranjana Raghunathan, 2022. "Everyday Intimacies and Inter-Ethnic Relationships: Tracing Entanglements of Gender and Race in Multicultural Singapore," Sociological Research Online, , vol. 27(1), pages 77-94, March.
    2. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    3. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    4. Songsore, Emmanuel & Buzzelli, Michael, 2014. "Social responses to wind energy development in Ontario: The influence of health risk perceptions and associated concerns," Energy Policy, Elsevier, vol. 69(C), pages 285-296.
    5. Tapsuwan, Sorada & Polyakov, Maksym & Bark, Rosalind & Nolan, Martin, 2015. "Valuing the Barmah–Millewa Forest and in stream river flows: A spatial heteroskedasticity and autocorrelation consistent (SHAC) approach," Ecological Economics, Elsevier, vol. 110(C), pages 98-105.
    6. Omar Al-Ubaydli & John List & Claire Mackevicius & Min Sok Lee & Dana Suskind, 2019. "How Can Experiments Play a Greater Role in Public Policy? 12 Proposals from an Economic Model of Scaling," Artefactual Field Experiments 00679, The Field Experiments Website.
    7. Nepomuceno, Marcelo Vinhal & Laroche, Michel, 2015. "The impact of materialism and anti-consumption lifestyles on personal debt and account balances," Journal of Business Research, Elsevier, vol. 68(3), pages 654-664.
    8. Bertschek, Irene & Kesler, Reinhold, 2022. "Let the user speak: Is feedback on Facebook a source of firms’ innovation?," Information Economics and Policy, Elsevier, vol. 60(C).
    9. Avelino, Flor & Wittmayer, Julia M. & Pel, Bonno & Weaver, Paul & Dumitru, Adina & Haxeltine, Alex & Kemp, René & Jørgensen, Michael S. & Bauler, Tom & Ruijsink, Saskia & O'Riordan, Tim, 2019. "Transformative social innovation and (dis)empowerment," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 195-206.
    10. Gigi Foster, 2020. "The behavioural economics of government responses to COVID-19," Journal of Behavioral Economics for Policy, Society for the Advancement of Behavioral Economics (SABE), vol. 4(S3), pages 11-43, December.
    11. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    12. Gerards, Ruud & Welters, Ricardo, 2016. "Impact of financial pressure on unemployed job search, job find success and job quality," ROA Research Memorandum 008, Maastricht University, Research Centre for Education and the Labour Market (ROA).
    13. Cairns, George & Wright, George & Fairbrother, Peter, 2016. "Promoting articulated action from diverse stakeholders in response to public policy scenarios: A case analysis of the use of ‘scenario improvisation’ method," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 97-108.
    14. Vasile-Daniel Păvăloaia & Elena-Mădălina Teodor & Doina Fotache & Magdalena Danileţ, 2019. "Opinion Mining on Social Media Data: Sentiment Analysis of User Preferences," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    15. Cailong Xu & Ruidong Li & Wenwen Song & Tingting Wu & Shi Sun & Shuixiu Hu & Tianfu Han & Cunxiang Wu, 2021. "Responses of Branch Number and Yield Component of Soybean Cultivars Tested in Different Planting Densities," Agriculture, MDPI, vol. 11(1), pages 1-12, January.
    16. Romaniuk, Jenni & Nenycz-Thiel, Magda, 2016. "Lapsed buyers' durable brand consideration in emerging markets," Journal of Business Research, Elsevier, vol. 69(9), pages 3645-3651.
    17. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    18. Michaela Haase & Emmanuel Raufflet, 2017. "Ideologies in Markets, Organizations, and Business Ethics: Drafting a Map: Introduction to the Special Issue," Journal of Business Ethics, Springer, vol. 142(4), pages 629-639, June.
    19. Rafael Alcadipani & Cíntia Rodrigues Oliveira Medeiros, 2020. "When Corporations Cause Harm: A Critical View of Corporate Social Irresponsibility and Corporate Crimes," Journal of Business Ethics, Springer, vol. 167(2), pages 285-297, November.
    20. Mansoora Ahmed & Sun Zehou & Syed Ali Raza & Muhammad Asif Qureshi & Sara Qamar Yousufi, 2020. "Impact of CSR and environmental triggers on employee green behavior: The mediating effect of employee well‐being," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2225-2239, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0188447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.