IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v188y2022ics0047259x21001755.html
   My bibliography  Save this article

A short history of statistical association: From correlation to correspondence analysis to copulas

Author

Listed:
  • Cuadras, Carles M.
  • Greenacre, Michael

Abstract

We present in three parts different concepts of correlation and statistical association, with some historical notes, starting with Galton’s notion of correlation, subsequently improved by Pearson. Continuing in this first part, we discuss the correlation ratio, the intraclass correlation, multiple correlation, and redundancy analysis. Throughout we use the classic data set of Galton on the heights of parents and their children. In the second part we explain how these same data can be studied from a multivariate viewpoint, using canonical correlation analysis, Procrustes correlation and simple/multiple correspondence analysis. For correspondence analysis, we use the same data as categorized by Galton into intervals of heights for the parents and their children. In this part we also make an incursion into the continuous form of correspondence analysis. The third part is dedicated to bivariate distributions, where we give the main results of bivariate distributions with given marginals, commenting on the correlations of Spearman and Kendall. Seeing that a bivariate distribution can be generated using a copula, we fit Galton’s data to two copulas: the Gaussian copula and the copula which has the best fit.

Suggested Citation

  • Cuadras, Carles M. & Greenacre, Michael, 2022. "A short history of statistical association: From correlation to correspondence analysis to copulas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21001755
    DOI: 10.1016/j.jmva.2021.104901
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21001755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wachsmuth A. & Wilkinson L. & Dallal G.E., 2003. "Galtons Bend: A Previously Undiscovered Nonlinearity in Galtons Family Stature Regression Data," The American Statistician, American Statistical Association, vol. 57, pages 190-192, August.
    2. Niels Waller, 2011. "The Geometry of Enhancement in Multiple Regression," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 634-649, October.
    3. Carles M. Cuadras & Walter Diaz & Sonia Salvo-Garrido, 2020. "Two generalized bivariate FGM distributions and rank reduction," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(23), pages 5639-5665, December.
    4. J. Gower, 1975. "Generalized procrustes analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 33-51, March.
    5. John Aitchison & Michael Greenacre, 2002. "Biplots of compositional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 375-392, October.
    6. Cuadras, Carles M., 2015. "Contributions to the diagonal expansion of a bivariate copula with continuous extensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 28-44.
    7. Papadatos, Nickos & Xifara, Tatiana, 2013. "A simple method for obtaining the maximal correlation coefficient and related characterizations," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 102-114.
    8. Cuadras, C. M., 2002. "On the Covariance between Functions," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 19-27, April.
    9. Arnold Wollenberg, 1977. "Redundancy analysis an alternative for canonical correlation analysis," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 207-219, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Walter Diaz & Carles M. Cuadras, 2022. "An extension of the Gumbel–Barnett family of copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 913-926, October.
    3. Lo, Ambrose, 2017. "Functional generalizations of Hoeffding’s covariance lemma and a formula for Kendall’s tau," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 218-226.
    4. Maria Iannario & Rosaria Romano & Domenico Vistocco, 2023. "Dyadic analysis for multi-block data in sport surveys analytics," Annals of Operations Research, Springer, vol. 325(1), pages 701-714, June.
    5. Pietro Lovaglio & Giorgio Vittadini, 2013. "Multilevel dimensionality-reduction methods," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 183-207, June.
    6. Balbi, S & Esposito, V, 2000. "Rotated canonical analysis onto a reference subspace," Computational Statistics & Data Analysis, Elsevier, vol. 32(3-4), pages 395-410, January.
    7. B. Baris Alkan & Afsin Sahin, 2011. "Measuring inequalities in the distribution of health workers by bi-plot approach: The case of Turkey," Journal of Economics and Behavioral Studies, AMH International, vol. 2(2), pages 57-66.
    8. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    9. Anders Alexandersson, 2004. "Graphing confidence ellipses: An update of ellip for Stata 8," Stata Journal, StataCorp LP, vol. 4(3), pages 242-256, September.
    10. Barbara McGillivray & Gard B. Jenset & Khalid Salama & Donna Schut, 2022. "Investigating patterns of change, stability, and interaction among scientific disciplines using embeddings," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    11. Javier Palarea-Albaladejo & Josep Martín-Fernández & Jesús Soto, 2012. "Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 144-169, July.
    12. Wei Wang & Stephen J Lycett & Noreen von Cramon-Taubadel & Jennie J H Jin & Christopher J Bae, 2012. "Comparison of Handaxes from Bose Basin (China) and the Western Acheulean Indicates Convergence of Form, Not Cognitive Differences," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    13. Cook, Judith A. & Razzano, Lisa & Cappelleri, Joseph C., 1996. "Canonical correlation analysis of residential and vocational outcomes following psychiatric rehabilitation," Evaluation and Program Planning, Elsevier, vol. 19(4), pages 351-363, November.
    14. Michael Greenacre & Paul Lewi, 2005. "Distributional equivalence and subcompositional coherence in the analysis of contingency tables, ratio-scale measurements and compositional data," Economics Working Papers 908, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 2007.
    15. Anna Maria Fiori & Francesco Porro, 2023. "A compositional analysis of systemic risk in European financial institutions," Annals of Finance, Springer, vol. 19(3), pages 325-354, September.
    16. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    17. Wong, Kit Pong, 2021. "Comparative risk aversion with two risks," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    18. Mardia, Kanti V. & Wiechers, Henrik & Eltzner, Benjamin & Huckemann, Stephan F., 2022. "Principal component analysis and clustering on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    20. Germ`a Coenders & N'uria Arimany Serrat, 2023. "Accounting statement analysis at industry level. A gentle introduction to the compositional approach," Papers 2305.16842, arXiv.org, revised Sep 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21001755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.